Home
Class 12
MATHS
sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]...

`sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]`

A

negative

B

positive

C

non - negative

D

non - positive

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cos^(-1){xsqrt(1-x)+sqrt(x)sqrt(1-x^2)} and 0

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

int(sin^2x*sec^2x+2tanx*sin^(- 1)x*sqrt(1-x^2))/(sqrt(1-x^2)(1+tan^2x))dx

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

Evaluate: int1/xsqrt((1-sqrt(x))/(1+sqrt(x))dx)

Evaluate: int1/xsqrt((1-sqrt(x))/(1+sqrt(x))dx)

(sin^(-1)x)/(sqrt(1-x^(2))