Home
Class 12
MATHS
If the integral int(x^(4)+x^(2)+1)/(x^(2...

If the integral `int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C,` (where C is the constant of integration and `x in R`), then the minimum value of `f'(x)` is

A

1

B

`(1)/(4)`

C

`(3)/(4)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^4 + x^2 + 1}{x^2 - x + 1} \, dx = f(x) + C, \] we will first simplify the integrand. ### Step 1: Simplify the integrand We can express the numerator \(x^4 + x^2 + 1\) in terms of the denominator \(x^2 - x + 1\). We can try polynomial long division or factorization. Notice that: \[ x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1) \] Thus, we can rewrite the integral as: \[ \int \frac{(x^2 + x + 1)(x^2 - x + 1)}{x^2 - x + 1} \, dx \] This simplifies to: \[ \int (x^2 + x + 1) \, dx \] ### Step 2: Integrate the simplified expression Now we can integrate: \[ \int (x^2 + x + 1) \, dx = \frac{x^3}{3} + \frac{x^2}{2} + x + C \] So we have: \[ f(x) = \frac{x^3}{3} + \frac{x^2}{2} + x \] ### Step 3: Differentiate \(f(x)\) Next, we differentiate \(f(x)\): \[ f'(x) = x^2 + x + 1 \] ### Step 4: Find the minimum value of \(f'(x)\) To find the minimum value of \(f'(x)\), we can analyze the quadratic function \(f'(x) = x^2 + x + 1\). The vertex of a quadratic function \(ax^2 + bx + c\) occurs at \(x = -\frac{b}{2a}\). Here, \(a = 1\) and \(b = 1\): \[ x = -\frac{1}{2 \cdot 1} = -\frac{1}{2} \] ### Step 5: Evaluate \(f'(-\frac{1}{2})\) Now we substitute \(x = -\frac{1}{2}\) back into \(f'(x)\): \[ f'\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) + 1 \] Calculating this: \[ = \frac{1}{4} - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] ### Conclusion Thus, the minimum value of \(f'(x)\) is \[ \frac{3}{4}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of int(x dx)/((x+3)sqrt(x+1) is (where , c is the constant of integration )