Home
Class 12
MATHS
The value of lim(nrarroo)Sigma(r=1)^(n)(...

The value of `lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r))` is equal to

A

0

B

1

C

6

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2^r + 3^r}{6^r}, \] we can break it down step by step. ### Step 1: Rewrite the limit We can express the limit as: \[ s = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2^r + 3^r}{6^r}. \] ### Step 2: Separate the terms in the summation We can separate the summation into two parts: \[ s = \lim_{n \to \infty} \left( \sum_{r=1}^{n} \frac{2^r}{6^r} + \sum_{r=1}^{n} \frac{3^r}{6^r} \right). \] ### Step 3: Simplify the fractions Now, we can simplify each term: \[ \frac{2^r}{6^r} = \left(\frac{2}{6}\right)^r = \left(\frac{1}{3}\right)^r, \] \[ \frac{3^r}{6^r} = \left(\frac{3}{6}\right)^r = \left(\frac{1}{2}\right)^r. \] ### Step 4: Rewrite the limit with simplified terms Thus, we can rewrite \(s\) as: \[ s = \lim_{n \to \infty} \left( \sum_{r=1}^{n} \left(\frac{1}{3}\right)^r + \sum_{r=1}^{n} \left(\frac{1}{2}\right)^r \right). \] ### Step 5: Recognize the geometric series Both summations are geometric series. The sum of a geometric series can be calculated using the formula: \[ \sum_{r=1}^{\infty} ar^r = \frac{a}{1 - r}, \] where \(a\) is the first term and \(r\) is the common ratio. ### Step 6: Calculate the first geometric series For the first series: \[ \sum_{r=1}^{\infty} \left(\frac{1}{3}\right)^r = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}. \] ### Step 7: Calculate the second geometric series For the second series: \[ \sum_{r=1}^{\infty} \left(\frac{1}{2}\right)^r = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1. \] ### Step 8: Combine the results Now, we can combine the results of both series: \[ s = \frac{1}{2} + 1 = \frac{1}{2} + \frac{2}{2} = \frac{3}{2}. \] ### Final Result Thus, the value of the limit is: \[ \boxed{\frac{3}{2}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of lim_(xrarr2)Sigma_(r=1)^(7)(x^(r )-2^(r ))/(2r(x-2)) is equal to

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

lim_(nrarroo) Sigma_(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal to

Sigma_(r=1)^(50)(r^2)/(r^2+(11-r)^2) is equal to ______.

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :