Home
Class 12
MATHS
If a=int(0)^(1)(cos(sinx))/(secx)dx, the...

If `a=int_(0)^(1)(cos(sinx))/(secx)dx,` then the value of `a^(2)+cos^(2)(sin1)` is equal to

A

0

B

1

C

`sin(1)`

D

`sin(sin1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( a = \int_{0}^{1} \frac{\cos(\sin x)}{\sec x} \, dx \) and then find the value of \( a^2 + \cos^2(\sin 1) \). ### Step 1: Simplify the integral We start with the integral: \[ a = \int_{0}^{1} \frac{\cos(\sin x)}{\sec x} \, dx \] Since \( \sec x = \frac{1}{\cos x} \), we can rewrite the integral as: \[ a = \int_{0}^{1} \cos(\sin x) \cdot \cos x \, dx \] ### Step 2: Use substitution Let \( t = \sin x \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{\cos x} \] We also need to change the limits of integration. When \( x = 0 \), \( t = \sin(0) = 0 \). When \( x = 1 \), \( t = \sin(1) \). Thus, the integral becomes: \[ a = \int_{0}^{\sin 1} \cos(t) \cdot \frac{dt}{\cos x} \] Since \( \cos x = \sqrt{1 - t^2} \) (from \( t = \sin x \)), we have: \[ a = \int_{0}^{\sin 1} \cos(t) \cdot \frac{dt}{\sqrt{1 - t^2}} \] ### Step 3: Recognize the integral The integral \( \int \cos(t) \, dt \) is straightforward: \[ \int \cos(t) \, dt = \sin(t) \] Thus, we compute: \[ a = \left[ \sin(t) \right]_{0}^{\sin 1} = \sin(\sin 1) - \sin(0) = \sin(\sin 1) \] ### Step 4: Calculate \( a^2 + \cos^2(\sin 1) \) Now we need to compute \( a^2 + \cos^2(\sin 1) \): \[ a^2 = (\sin(\sin 1))^2 \] Thus, we have: \[ a^2 + \cos^2(\sin 1) = \sin^2(\sin 1) + \cos^2(\sin 1) \] Using the Pythagorean identity: \[ \sin^2(x) + \cos^2(x) = 1 \] for \( x = \sin 1 \), we find: \[ \sin^2(\sin 1) + \cos^2(\sin 1) = 1 \] ### Final Answer Therefore, the value of \( a^2 + \cos^2(\sin 1) \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

The value of int_(0)^(2npi)[sin x cos x] dx is equal to

int_(0)^(pi) cos 2x . Log (sinx) dx

int(cos x)/(1+sinx) dx

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

The value of int_(0)^(2pi) |cos x -sin x|dx is