Home
Class 12
MATHS
If p and q are two logical statements, t...

If p and q are two logical statements, then `prArr (qrArrp)` is equivalent to

A

`prArr (p rArr q)`

B

`p rArr (p vv q)`

C

`p rArr (p ^^ q)`

D

`prArr (p hArr q)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the equivalence of the logical statement \( p \rightarrow (q \rightarrow p) \), we can use a truth table. Let's go through the steps systematically. ### Step 1: Identify the Variables We have two logical statements: \( p \) and \( q \). ### Step 2: Create the Truth Table Since we have two variables, the number of possible combinations of truth values is \( 2^2 = 4 \). We will list all combinations of truth values for \( p \) and \( q \). | \( p \) | \( q \) | |---------|---------| | T | T | | T | F | | F | T | | F | F | ### Step 3: Calculate \( q \rightarrow p \) The implication \( q \rightarrow p \) is false only when \( q \) is true and \( p \) is false. We will calculate this for each row. | \( p \) | \( q \) | \( q \rightarrow p \) | |---------|---------|------------------------| | T | T | T | | T | F | T | | F | T | F | | F | F | T | ### Step 4: Calculate \( p \rightarrow (q \rightarrow p) \) Now we will calculate \( p \rightarrow (q \rightarrow p) \). This implication is false only when \( p \) is true and \( (q \rightarrow p) \) is false. | \( p \) | \( q \) | \( q \rightarrow p \) | \( p \rightarrow (q \rightarrow p) \) | |---------|---------|------------------------|----------------------------------------| | T | T | T | T | | T | F | T | T | | F | T | F | T | | F | F | T | T | ### Step 5: Final Truth Table The final truth table for \( p \rightarrow (q \rightarrow p) \) is: | \( p \) | \( q \) | \( p \rightarrow (q \rightarrow p) \) | |---------|---------|----------------------------------------| | T | T | T | | T | F | T | | F | T | T | | F | F | T | ### Conclusion The expression \( p \rightarrow (q \rightarrow p) \) is always true regardless of the truth values of \( p \) and \( q \). Thus, it is equivalent to the logical statement "True".
Promotional Banner

Similar Questions

Explore conceptually related problems

If p and q are logical statements, then p rArr (~q rArr p) is equivalent to

If p and q are two logical statements, then ~(pvvq)rarr(prarrq) is equivalent to

If p and q are logical statements, then (p^^q)rarr(prarrq) is equivalent to

If p and q are logical statements, then (~p)rarr(prarrq) is equivalent to

If p is any logical statement, then

The statement ~prarr(qrarrp) is equivalent to

If p and q are two statements, then p vv ~ ( p Rightarrow ~ q) is equivalent to

If p and q are two statements, then p vv ~ ( p Rightarrow ~ q) is equivalent to

The statement ~(phArr q) is not equivalent to

The statement phArr q is not equivalent to