Home
Class 12
MATHS
The value of int(3)^(6)(sqrt((36-x^(2))^...

The value of `int_(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx` is equal to

A

`(pi)/(2)`

B

`(pi)/(6)`

C

`(pi)/(3)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{3}^{6} \frac{\sqrt{(36 - x^2)^3}}{x^4} \, dx, \] we will use the substitution \( x = 6 \sin \theta \). ### Step 1: Substitution Let \[ x = 6 \sin \theta. \] Then, the differential \( dx \) becomes: \[ dx = 6 \cos \theta \, d\theta. \] ### Step 2: Change the limits of integration When \( x = 3 \): \[ 3 = 6 \sin \theta \implies \sin \theta = \frac{1}{2} \implies \theta = \frac{\pi}{6}. \] When \( x = 6 \): \[ 6 = 6 \sin \theta \implies \sin \theta = 1 \implies \theta = \frac{\pi}{2}. \] Thus, the limits change from \( x = 3 \) to \( x = 6 \) to \( \theta = \frac{\pi}{6} \) to \( \theta = \frac{\pi}{2} \). ### Step 3: Substitute into the integral Now we substitute \( x \) and \( dx \) into the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sqrt{(36 - (6 \sin \theta)^2)^3}}{(6 \sin \theta)^4} \cdot (6 \cos \theta) \, d\theta. \] ### Step 4: Simplify the integrand We simplify \( 36 - (6 \sin \theta)^2 \): \[ 36 - 36 \sin^2 \theta = 36 (1 - \sin^2 \theta) = 36 \cos^2 \theta. \] Thus, \[ \sqrt{(36 - (6 \sin \theta)^2)^3} = \sqrt{(36 \cos^2 \theta)^3} = 36^{3/2} \cos^3 \theta = 216 \cos^3 \theta. \] Now, substituting this back into the integral gives: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{216 \cos^3 \theta}{(6 \sin \theta)^4} \cdot (6 \cos \theta) \, d\theta. \] This simplifies to: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{216 \cos^4 \theta}{6^4 \sin^4 \theta} \cdot 6 \, d\theta = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{36 \cos^4 \theta}{\sin^4 \theta} \, d\theta. \] ### Step 5: Rewrite the integral This can be rewritten as: \[ I = 36 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot^4 \theta \, d\theta. \] ### Step 6: Integrate \( \cot^4 \theta \) Using the identity \( \cot^4 \theta = \cot^2 \theta \cdot \cot^2 \theta \) and the formula: \[ \int \cot^2 \theta \, d\theta = \cot \theta - \theta, \] we can compute: \[ \int \cot^4 \theta \, d\theta = \int \cot^2 \theta \cdot \cot^2 \theta \, d\theta = \int (\cot^2 \theta - 1)^2 \, d\theta. \] ### Step 7: Evaluate the definite integral After performing the integration and substituting the limits, we find: \[ I = \frac{\pi}{3}. \] Thus, the final answer is: \[ \boxed{\frac{\pi}{3}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx is equal to

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

4 int (sqrt(a^(6)+x^(8)))/(x) dx is equal to

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

The value of int_(3)^(5) (x^(2))/(x^(2)-4) dx, is

int(x^3-x)/(1+x^6)dx is equal to

int_(1)^((4sqrt(3))/(3)-1)(x+2)/(sqrt(x^(2)+2x-3))dx equal to

The value of int_(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is __________.

The value of int_(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to