Home
Class 12
MATHS
Line L(1)-=3x-4y+1=0 touches the cirlces...

Line `L_(1)-=3x-4y+1=0` touches the cirlces `C_(1) and C_(2)`. Centres of `C_(1) and C_(2)` are `A_(2)(1, 2) and A_(2)(3, 1)` respectively, then identify the INCORRECT statement from the following statements.

A

`L_(1)` is direct common tangent of these circles

B

`L_(1)` is transverse common tangent to these circles

C

Radius of circle `C_(1)` is `(4)/(5)` units

D

Radius of circle `C_(2)` is `(6)/(5)` units

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The line L_(1)-=3x-4y+1=0 touches the circles C_(1) and C_(2) . Centers of C_(1) and C_(2) are A_(1)(1, 2) and A_(2)(3, 1) respectively Then, the length (in units) of the transverse common tangent of C_(1) and C_(2) is equal to

If the lines x=a_(1)y + b_(1), z=c_(1)y +d_(1) and x=a_(2)y +b_(2), z=c_(2)y + d_(2) are perpendicular, then

Let each of the circles S_(1)-=x^(2)+y^(2)+4y-1=0 S_(1)-= x^(2)+y^(2)+6x+y+8=0 S_(3)-=x^(2)+y^(2)-4x-4y-37=0 touch the other two. Also, let P_(1),P_(2) and P_(3) be the points of contact of S_(1) and S_(2) , S_(2) and S_(3) , and S_(3) , respectively, C_(1),C_(2) and C_(3) are the centres of S_(1),S_(2) and S_(3) respectively. The ratio ("area"(DeltaP_(1)P_(2)P_(3)))/("area"(DeltaC_(1)C_(2)C_(3))) is equal to

Let each of the circles, S_(1)=x^(2)+y^(2)+4y-1=0 , S_(2)=x^(2)+y^(2)+6x+y+8=0 , S_(3)=x^(2)+y^(2)-4x-4y-37=0 touches the other two. Let P_(1), P_(2), P_(3) be the points of contact of S_(1) and S_(2), S_(2) and S_(3), S_(3) and S_(1) respectively and C_(1), C_(2), C_(3) be the centres of S_(1), S_(2), S_(3) respectively. Q. The co-ordinates of P_(1) are :

Let the incircle of DeltaABC touches the sides BC, CA, AB at A_(1), B_(1),C_(1) respectively. The incircle of DeltaA_(1)B_(1)C_(1) touches its sides of B_(1)C_(1), C_(1)A_(1) and A_(1)B_(1)" at " A_(2), B_(2), C_(2) respectively and so on. Q. lim_(n to oo) angleA_(n)=

Let the incircle of DeltaABC touches the sides BC, CA, AB at A_(1), B_(1),C_(1) respectively. The incircle of DeltaA_(1)B_(1)C_(1) touches its sides of B_(1)C_(1), C_(1)A_(1) and A_(1)B_(1)" at " A_(2), B_(2), C_(2) respectively and so on. Q. In DeltaA_(4)B_(4)C_(4) , the value of angleA_(4) is:

Statement - 1 : For the straight lines 3x - 4y + 5 = 0 and 5x + 12 y - 1 = 0 , the equation of the bisector of the angle which contains the origin is 16 x + 2 y + 15 = 0 and it bisects the acute angle between the given lines . statement - 2 : Let the equations of two lines be a_(1) x + b_(1) y + c_(1) = 0 and a_(2) x + b_(2) y + c_(2) = 0 where c_(1) and c_(2) are positive . Then , the bisector of the angle containing the origin is given by (a_(1) x + b_(1) y + c_(1))/(sqrt(a_(2)^(2) + b_(1)^(2))) = (a_(2) x + b_(2)y + c_(2))/(sqrt(a_(2)^(2) + b_(2)^(2))) If a_(1) a_(2) + b_(1) b_(2) gt 0 , then the above bisector bisects the obtuse angle between given lines .

The circle inscribed in the triangle ABC touches the side BC, CA and AB in the point A_(1)B_(1) and C_(1) respectively. Similarly the circle inscribed in the Delta A_(1) B_(1) C_(1) touches the sieds in A_(2), B_(2), C_(2) respectively and so on. If A_(n) B_(n) C_(n) be the nth Delta so formed, prove that its angle are pi/3-(2)^-n(A-(pi)/(3)), pi/3-(2)^-n(B-(pi)/(3)),pi/3-(2)^-n(C-(pi)/(3)). Hence prove that the triangle so formed is ultimately equilateral.

Condider the lines L_(1):3x+4y=k-12,L_(2):3x+4y=sqrt2k and the ellipse C : (x^(2))/(16)+(y^(2))/(9)=1 where k is any real number Statement-1: If line L_(1) is a diameter of ellipse C, then line L_(2) is not a tangent to the ellipse C. Statement-2: If L_(2) is a diameter of ellipse C, L_(1) is the chord joining the negative end points of the major and minor axes of C.

t_(1),t_(2),t_(3) are lengths of tangents drawn from a point (h,k) to the circles x^(2)+y^(2)=4,x^(2)+y^(2)-4x=0andx^(2)+y^(2)-4y=0 respectively further, t_(1)^(4)=t_(2)^(2)" "t_(3)^(2)+16 . Locus of the point (h,k) consist of a straight line L_(1) and a circle C_(1) passing through origin. A circle C_(2) , which is equal to circle C_(1) is drawn touching the line L_(1) and the circle C_(1) externally. The distance between the centres of C_(1)andC_(2) is