Home
Class 12
MATHS
If f(x)={{:(((2^(x)-1)^(2)tan3x)/(xsin^...

If `f(x)={{:(((2^(x)-1)^(2)tan3x)/(xsin^(2)x)":",0ltxltpi//6),(lambda":",x=0):}` is continuous at x = 0, then the value of `(10sqrt(3lambda))/(ln2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). This means that the limit of \( f(x) \) as \( x \) approaches 0 must equal \( f(0) \), which is given as \( \lambda \). ### Step 1: Set up the limit We start with the function defined for \( 0 < x < \frac{\pi}{6} \): \[ f(x) = \frac{(2^x - 1)^2 \tan(3x)}{x \sin^2(x)} \] We need to find: \[ \lim_{x \to 0} f(x) = \lambda \] ### Step 2: Apply the limit We can rewrite the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(2^x - 1)^2 \tan(3x)}{x \sin^2(x)} \] ### Step 3: Use known limits We will use the following known limits: 1. \( \lim_{x \to 0} \frac{2^x - 1}{x} = \ln(2) \) 2. \( \lim_{x \to 0} \frac{\tan(3x)}{3x} = 1 \) 3. \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \) ### Step 4: Rewrite the limit expression We can manipulate the limit to use these known limits: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(2^x - 1)^2}{x^2} \cdot \frac{\tan(3x)}{3x} \cdot \frac{3x}{\sin^2(x)} \] ### Step 5: Substitute the limits Now substituting the limits: 1. \( (2^x - 1)^2 \) becomes \( (\ln(2) \cdot x)^2 = (\ln(2))^2 x^2 \) 2. \( \tan(3x) \) becomes \( 3x \) as \( x \to 0 \) 3. \( \sin^2(x) \) becomes \( x^2 \) Thus, we can write: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(\ln(2))^2 x^2 \cdot 3x}{x \cdot x^2} = \lim_{x \to 0} \frac{3(\ln(2))^2 x^2}{x^3} = 3(\ln(2))^2 \] ### Step 6: Set the limit equal to \( \lambda \) Since we have established that: \[ \lim_{x \to 0} f(x) = 3(\ln(2))^2 \] we can set this equal to \( \lambda \): \[ \lambda = 3(\ln(2))^2 \] ### Step 7: Find the value of \( \frac{10\sqrt{3\lambda}}{\ln(2)} \) Now we substitute \( \lambda \) into the expression: \[ \frac{10\sqrt{3\lambda}}{\ln(2)} = \frac{10\sqrt{3 \cdot 3(\ln(2))^2}}{\ln(2)} = \frac{10\sqrt{9(\ln(2))^2}}{\ln(2)} = \frac{10 \cdot 3\ln(2)}{\ln(2)} = 30 \] ### Final Answer Thus, the final value is: \[ \boxed{30} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

If f (x) {{:((1 - cos 8 x )/(x^(2)) "," x ge 0 ),(lambda ", " x lt 0 ) :} is continous at x = 0 than lambda = ?

If f(x)={{:((sin2x)/(cx)+(x)/((sqrt(x+a^(2))-a)),,,xne 0"," (alt0)),(b,,,x=0","(bne0)):} and f(x) is continuous at x = 0, then the value of bc is equal to

If f(x)={{:((1+|sinx|)^((p)/(|sinx|)),",",-(pi)/(6)ltxlt0),(q,":",x=0),(e^(tan3x.cot5x),":",0ltxlt(pi)/(6)):} is continuous at x = 0, then the value of 2p+10lnq is equal to

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

Consider f(x)={{:([x]+[-x],xne2),(lambda,x=2):} where [.] denotes the greatest integer function. If f(x) is continuous at x=2 then the value of lambda is equal to

Let f(x)={((alpha cotx)/x+beta/x^2 ,, 0<|x|lt=1),(1/3 ,, x=0):} . If f(x) is continuous at x=0 then the value of alpha^2+beta^2 is

If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1) , then value of f (0) is

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is