Home
Class 12
MATHS
If f:R rarr (0, pi//2], f(x)=sin^(-1)((4...

If `f:R rarr (0, pi//2], f(x)=sin^(-1)((40)/(x^(2)+x+lambda))` is a surjective function, then the value of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \lambda \) such that the function \( f(x) = \sin^{-1}\left(\frac{40}{x^2 + x + \lambda}\right) \) is surjective from \( \mathbb{R} \) to \( \left(0, \frac{\pi}{2}\right] \). ### Step 1: Understand the function and its range The function \( f(x) \) maps real numbers \( x \) to the interval \( \left(0, \frac{\pi}{2}\right] \). For \( f(x) \) to be surjective, the range of \( f(x) \) must equal the co-domain \( \left(0, \frac{\pi}{2}\right] \). ### Step 2: Set up the equation Let \( y = f(x) \). Then we have: \[ y = \sin^{-1}\left(\frac{40}{x^2 + x + \lambda}\right) \] Taking the sine of both sides gives: \[ \sin y = \frac{40}{x^2 + x + \lambda} \] Rearranging this, we find: \[ x^2 + x + \lambda = \frac{40}{\sin y} \] ### Step 3: Analyze the quadratic equation Rearranging gives us a quadratic equation in \( x \): \[ x^2 + x + \left(\lambda - \frac{40}{\sin y}\right) = 0 \] For this quadratic to have real solutions for all \( y \in \left(0, \frac{\pi}{2}\right] \), the discriminant must be non-negative. ### Step 4: Calculate the discriminant The discriminant \( D \) of the quadratic \( ax^2 + bx + c = 0 \) is given by: \[ D = b^2 - 4ac \] For our equation: - \( a = 1 \) - \( b = 1 \) - \( c = \lambda - \frac{40}{\sin y} \) Thus, the discriminant is: \[ D = 1^2 - 4 \cdot 1 \cdot \left(\lambda - \frac{40}{\sin y}\right) = 1 - 4\lambda + \frac{160}{\sin y} \] For \( f(x) \) to be surjective, we require: \[ D \geq 0 \] This leads to: \[ 1 - 4\lambda + \frac{160}{\sin y} \geq 0 \] ### Step 5: Find the critical points Rearranging gives: \[ \frac{160}{\sin y} \geq 4\lambda - 1 \] This can be rewritten as: \[ \sin y \leq \frac{160}{4\lambda - 1} \] The maximum value of \( \sin y \) is 1 (when \( y = \frac{\pi}{2} \)), hence: \[ 1 \leq \frac{160}{4\lambda - 1} \] This implies: \[ 4\lambda - 1 \geq 160 \] Solving for \( \lambda \): \[ 4\lambda \geq 161 \quad \Rightarrow \quad \lambda \geq \frac{161}{4} = 40.25 \] ### Conclusion Thus, the value of \( \lambda \) must be: \[ \lambda = 40.25 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr [(pi)/(3),pi) defined by f(x)=cos^(-1)((lambda-x^(2))/(x^(2)+2)) is a surjective function, then the value of lambda is equal to

If the function f:R rarr A defined as f(x)=sin^(-1)((x)/(1+x^(2))) is a surjective function, then the set A is

If f:R rarr [pi/6,pi/2], f(x)=sin^(-1)((x^(2)-a)/(x^(2)+1)) is an onto function, the set of values a is

If the function f:R rarrA defined as f(x)=tan^(-1)((2x^(3))/(1+x^(6))) is a surjective function, then the set A is equal to

If f:R rarrA defined as f(x)=tan^(-1)(sqrt(4(x^(2)+x+1))) is surjective, then A is equal to

If f:[-pi//2,pi//2] cupR given by f(x)=cosx+sin[(x+1)/(lambda)] is an even function. Then the set of values of lambda(lambda gt0) is Here, [*] denotes the greatest integer function.

If the equation sin^(-1)(x^2+x +1)+cos^(-1)(lambda x+1)=pi/2 has exactly two solutions, then the value of lambda is

If f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda) has a period = pi/2 then find the value of lambda

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to