Home
Class 12
MATHS
The value of lim(xrarr0^(-))(4^(2+(3)/(x...

The value of `lim_(xrarr0^(-))(4^(2+(3)/(x))+5(2^((1)/(x))))/(2^((1+(6)/(x)))+6(2^((1)/(x))))` is equal to

A

`(5)/(6)`

B

8

C

16

D

`(5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to 0^-} \frac{4^{2 + \frac{3}{x}} + 5 \cdot 2^{\frac{1}{x}}}{2^{1 + \frac{6}{x}} + 6 \cdot 2^{\frac{1}{x}}} \] we will break it down step by step. ### Step 1: Rewrite the terms in the limit We start by rewriting \(4\) as \(2^2\): \[ 4^{2 + \frac{3}{x}} = (2^2)^{2 + \frac{3}{x}} = 2^{4 + \frac{6}{x}} \] Thus, the limit becomes: \[ \lim_{x \to 0^-} \frac{2^{4 + \frac{6}{x}} + 5 \cdot 2^{\frac{1}{x}}}{2^{1 + \frac{6}{x}} + 6 \cdot 2^{\frac{1}{x}}} \] ### Step 2: Factor out the dominant term As \(x\) approaches \(0\) from the left, \( \frac{1}{x} \) approaches \(-\infty\). Therefore, \(2^{\frac{1}{x}}\) approaches \(0\) and \(2^{\frac{6}{x}}\) approaches \(+\infty\). We can factor out \(2^{\frac{6}{x}}\) from both the numerator and the denominator: \[ \lim_{x \to 0^-} \frac{2^{\frac{6}{x}} \left(2^4 + 5 \cdot 2^{\frac{1}{x} - \frac{6}{x}}\right)}{2^{\frac{6}{x}} \left(2^1 + 6 \cdot 2^{\frac{1}{x} - \frac{6}{x}}\right)} \] This simplifies to: \[ \lim_{x \to 0^-} \frac{2^4 + 5 \cdot 2^{\frac{1}{x} - \frac{6}{x}}}{2^1 + 6 \cdot 2^{\frac{1}{x} - \frac{6}{x}}} \] ### Step 3: Analyze the limit as \(x \to 0^-\) As \(x \to 0^-\), \( \frac{1}{x} - \frac{6}{x} = -\frac{5}{x} \to +\infty\). Thus, \(2^{\frac{1}{x} - \frac{6}{x}} \to +\infty\). Now the limit becomes: \[ \lim_{x \to 0^-} \frac{2^4 + 5 \cdot \infty}{2^1 + 6 \cdot \infty} \] This simplifies to: \[ \lim_{x \to 0^-} \frac{5 \cdot \infty}{6 \cdot \infty} = \frac{5}{6} \] ### Final Result Thus, the value of the limit is: \[ \frac{5}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0^(-))(4^((3)/(x))+15(2^((1)/(x))))/(2^(1+(6)/(x))+6(2^((1)/(x)))) is equal to

The value of lim_(xrarr0^(-))(2^(1//x)+2^(3//x))/(3(2^(1//x))+5(2^(3//x)) is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(xrarr0) (x^(2)-3x+2)

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

lim_( xrarr0) (1-cosx)/(x^(2))

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

lim_(xrarr0) ((x+1)^(5)-1)/(x)

The value of lim_(xrarr0^(+)){x^(x)+x^((x^(x)))} is equal to