Home
Class 12
MATHS
The value of the integral intx^((1)/(3))...

The value of the integral `intx^((1)/(3))(1-sqrtx)^(3)dx` is equal to (where c is the constant of integration)

A

`6((x^((4)/(3)))/(8)+(3)/(11)x^((11)/(6))+(3)/(14)x^((7)/(3))+(1)/(17)x^((17)/(6)))+c`

B

`6((x^((4)/(3)))/(8)-(3)/(11)x^((11)/(6))+(3)/(14)x^((7)/(3))-(1)/(17)x^((17)/(6)))+c`

C

`2((x^((4)/(3)))/(8)-(3)/(11)x^((11)/(6))-(3)/(14)x^((7)/(3))-(1)/(17)x^((17)/(6)))+c`

D

`2((x^(4))/(8)-(3)/(11)x^(11)-(3)/(11)x^(7)-(1)/(17)x^(17))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^{\frac{1}{3}} (1 - \sqrt{x})^3 \, dx \), we can follow these steps: ### Step 1: Expand the integrand using the binomial theorem We start by expanding \( (1 - \sqrt{x})^3 \) using the binomial theorem: \[ (1 - \sqrt{x})^3 = 1 - 3\sqrt{x} + 3x - x^{\frac{3}{2}} \] ### Step 2: Substitute the expansion back into the integral Now, substitute this expansion back into the integral: \[ \int x^{\frac{1}{3}} (1 - \sqrt{x})^3 \, dx = \int x^{\frac{1}{3}} \left( 1 - 3\sqrt{x} + 3x - x^{\frac{3}{2}} \right) \, dx \] ### Step 3: Distribute \( x^{\frac{1}{3}} \) across the terms Distributing \( x^{\frac{1}{3}} \) gives us: \[ \int \left( x^{\frac{1}{3}} - 3x^{\frac{1}{3}} \cdot \sqrt{x} + 3x^{\frac{4}{3}} - x^{\frac{3}{2}} \cdot x^{\frac{1}{3}} \right) \, dx \] This simplifies to: \[ \int \left( x^{\frac{1}{3}} - 3x^{\frac{5}{6}} + 3x^{\frac{4}{3}} - x^{\frac{5}{6}} \right) \, dx \] Combining like terms: \[ \int \left( x^{\frac{1}{3}} - 4x^{\frac{5}{6}} + 3x^{\frac{4}{3}} \right) \, dx \] ### Step 4: Integrate each term separately Now we can integrate each term separately: 1. \( \int x^{\frac{1}{3}} \, dx = \frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1} = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = \frac{3}{4} x^{\frac{4}{3}} \) 2. \( \int -4x^{\frac{5}{6}} \, dx = -4 \cdot \frac{x^{\frac{5}{6} + 1}}{\frac{5}{6} + 1} = -4 \cdot \frac{x^{\frac{11}{6}}}{\frac{11}{6}} = -\frac{24}{11} x^{\frac{11}{6}} \) 3. \( \int 3x^{\frac{4}{3}} \, dx = 3 \cdot \frac{x^{\frac{4}{3} + 1}}{\frac{4}{3} + 1} = 3 \cdot \frac{x^{\frac{7}{3}}}{\frac{7}{3}} = \frac{9}{7} x^{\frac{7}{3}} \) ### Step 5: Combine the results and add the constant of integration Combining all the results: \[ \int x^{\frac{1}{3}} (1 - \sqrt{x})^3 \, dx = \frac{3}{4} x^{\frac{4}{3}} - \frac{24}{11} x^{\frac{11}{6}} + \frac{9}{7} x^{\frac{7}{3}} + C \] ### Final Answer Thus, the value of the integral is: \[ \frac{3}{4} x^{\frac{4}{3}} - \frac{24}{11} x^{\frac{11}{6}} + \frac{9}{7} x^{\frac{7}{3}} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the constant of integration)

The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the constant of integration)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)