Home
Class 12
MATHS
If |(alpha^(2n),alpha^(2n+2),alpha^(2n+4...

If `|(alpha^(2n),alpha^(2n+2),alpha^(2n+4)),(beta^(2n),beta^(2n+2),beta^(2n+4)),(gamma^(2n),gamma^(2n+2),gamma^(2n+4))|=((1)/(beta^(2))-(1)/(alpha^(2)))((1)/(gamma^(2))-(1)/(beta^(2)))((1)/(alpha^(2))-(1)/(gamma^(2)))`
{where `alpha^(2), beta^(2) and gamma^(2)` are al distinct}, then the value of n is equal to

A

4

B

`-4`

C

3

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If A= [(alpha,beta),(gamma,-alpha)] is such that A^(2)=1 , then

If alpha, beta, gamma be the roots of the equation x(1+x^(2))+x^(2)(6+x)+2=0 then match the entries of column-I with those of column-II. {:("column-I" , " Column -II"),("(A) " alpha^(-1)+beta^(-1)+gamma^(-1) " is equal to " , "(p) 8"),("(B)" alpha^(2)+beta^(2)+gamma^(2)" equals" , "(q)" -1/2),("(C)"(alpha^(-1)+beta^(-1)+gamma^(-1))-(alpha+beta+gamma) " is equal to " , "(r) -1"),("(D)"[alpha^(-1)+beta^(-1)+gamma^(-1)] " equals where [.] denotes the greatest integer equal to " , "(t)" 5/2):}

Three positive acute angles alpha, beta and gamma satisfy the relation tan. (beta)/(2)=(1)/(3)cot.(alpha)/(2)and cot.(gamma)/(2)=(1)/(2)(3tan.(alpha)/(2)+cot.(alpha)/(2)) . Then, the value of alpha+beta+gamma is equal to

If alpha,beta,gamma in R, alpha+beta+gamma=4 " and " alpha^(2)+beta^(2)+gamma^(2)=6 , the number of integers lie in the exhaustive range of alpha is ……… .

If alpha + beta + gamma = π/2 and cot alpha, cot beta, cot gamma are in Ap. Then cot alpha. Cot gamma

Using properties of determinants. Prove that |(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta)|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals