Home
Class 12
MATHS
If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) a...

If `0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2))`, then the value of `A+B` is equal to

A

`(2pi)/(3)`

B

`(5pi)/(6)`

C

`pi`

D

`(4pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations:** \[ \sin A - \sin B = \frac{1}{\sqrt{2}} \quad \text{(Equation 1)} \] \[ \cos A - \cos B = \sqrt{\frac{3}{2}} \quad \text{(Equation 2)} \] 2. **Using the Sine Difference Formula:** We can use the sine difference formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Setting this equal to \(\frac{1}{\sqrt{2}}\): \[ 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) = \frac{1}{\sqrt{2}} \] 3. **Using the Cosine Difference Formula:** Similarly, for cosine: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Setting this equal to \(\sqrt{\frac{3}{2}}\): \[ -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) = \sqrt{\frac{3}{2}} \] 4. **Dividing the Two Equations:** Now, we divide Equation 2 by Equation 1: \[ \frac{-2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)}{2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)} = \frac{\sqrt{\frac{3}{2}}}{\frac{1}{\sqrt{2}}} \] This simplifies to: \[ -\tan\left(\frac{A+B}{2}\right) = \sqrt{3} \] Thus: \[ \tan\left(\frac{A+B}{2}\right) = -\sqrt{3} \] 5. **Finding the Angle:** The value of \(\tan\theta = -\sqrt{3}\) corresponds to angles in the second quadrant. The reference angle for \(\tan\theta = \sqrt{3}\) is \(\frac{\pi}{3}\). Therefore: \[ \frac{A+B}{2} = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] 6. **Calculating \(A + B\):** Multiplying both sides by 2 gives: \[ A + B = 2 \times \frac{2\pi}{3} = \frac{4\pi}{3} \] Thus, the final answer is: \[ \boxed{\frac{4\pi}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2), then A =

If sin (A+B) =1 and cos (A-B) = (sqrt(3))/(2) , then find the values of A and B.

sin(A+B)=1/sqrt(2) cos(A-B)=sqrt3|2

If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value of B.

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

If (sinA)/(sinB)=(sqrt(3))/2 and (cosA)/(cosB)=(sqrt(5))/2, 0 < A, B < pi/2, then tanA+tanB is equal to

If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)/(1+tanAtanB)

If cos(A+B)=0andsin(A-B)=(sqrt(3))/(2) then find the value of tan(A-3B) .

If sin(A+B)=1 and cos(A-B)=(sqrt(3))/2 , then find A and B dot

sin (A - 45 ^(@) ) = (1)/( sqrt2) (sin A - cos A)