Home
Class 12
MATHS
The value of lim(xrarr0)(secx-(secx)^(se...

The value of `lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx))` is equal to

A

0

B

1

C

2

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

int(secx)/(sqrt(cos2x)) dx is equal to

secx=2

inte^(-x)(1-tanx)secx dx is equal to

int(secx."cosec"x)/(2cotx-secx"cosec x")dx is equal to

The value of lim_(xrarr0)(ln(1+2x+4x^(2))+ln(1-2x+4x^(2)))/(secx-cosx) is equal to

inte^(tanx)(secx-sinx)dx is equal to

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

int sqrt(1+secx) dx is equal to: