Home
Class 12
MATHS
"cosec"^(2)theta(cos^(2)theta-3cos theta...

`"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1`, If `theta` belongs to

A

`(0, (pi)/(3))`

B

`((pi)/(2), pi)`

C

`((pi)/(3), (pi)/(2))`

D

`(0, (pi)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \csc^2 \theta (\cos^2 \theta - 3 \cos \theta + 2) \geq 1 \), we will follow these steps: ### Step 1: Rewrite the inequality in terms of sine and cosine We know that \( \csc^2 \theta = \frac{1}{\sin^2 \theta} \). Thus, we can rewrite the inequality as: \[ \frac{1}{\sin^2 \theta} (\cos^2 \theta - 3 \cos \theta + 2) \geq 1 \] ### Step 2: Multiply both sides by \( \sin^2 \theta \) Since \( \sin^2 \theta > 0 \) for \( \theta \) not equal to \( n\pi \) (where \( n \) is an integer), we can multiply both sides by \( \sin^2 \theta \): \[ \cos^2 \theta - 3 \cos \theta + 2 \geq \sin^2 \theta \] ### Step 3: Substitute \( \sin^2 \theta \) Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can substitute this into the inequality: \[ \cos^2 \theta - 3 \cos \theta + 2 \geq 1 - \cos^2 \theta \] ### Step 4: Rearrange the inequality Rearranging gives us: \[ \cos^2 \theta + \cos^2 \theta - 3 \cos \theta + 2 - 1 \geq 0 \] This simplifies to: \[ 2 \cos^2 \theta - 3 \cos \theta + 1 \geq 0 \] ### Step 5: Factor the quadratic Now, we will factor the quadratic \( 2 \cos^2 \theta - 3 \cos \theta + 1 \): \[ (2 \cos \theta - 1)(\cos \theta - 1) \geq 0 \] ### Step 6: Find the critical points Setting each factor to zero gives us the critical points: 1. \( 2 \cos \theta - 1 = 0 \) → \( \cos \theta = \frac{1}{2} \) → \( \theta = \frac{\pi}{3} \) 2. \( \cos \theta - 1 = 0 \) → \( \cos \theta = 1 \) → \( \theta = 0 \) ### Step 7: Analyze the intervals We need to analyze the sign of the product \( (2 \cos \theta - 1)(\cos \theta - 1) \) in the intervals defined by the critical points \( 0, \frac{\pi}{3}, \) and \( \pi \): - For \( \theta < 0 \): Not applicable since \( \theta \) must be in the range of angles where cosine is defined. - For \( 0 < \theta < \frac{\pi}{3} \): Choose \( \theta = \frac{\pi}{6} \) → \( (2 \cdot \frac{\sqrt{3}}{2} - 1)(\frac{\sqrt{3}}{2} - 1) < 0 \) - For \( \frac{\pi}{3} < \theta < 1 \): Choose \( \theta = \frac{\pi}{2} \) → \( (2 \cdot 0 - 1)(0 - 1) > 0 \) - For \( \theta > 1 \): Choose \( \theta = \pi \) → \( (2 \cdot -1 - 1)(-1 - 1) < 0 \) ### Step 8: Write the solution The solution to the inequality is: \[ \theta \in \left[0, \frac{\pi}{3}\right] \cup \left[\frac{\pi}{3}, \pi\right] \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Solve cos theta+cos 2theta+cos 3theta=0 .

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.

Prove that cos^(2)theta("cosec"^(2)theta-cot^(2)theta)=cos^(2)theta .

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is

Given : 4 sin theta = 3 cos theta , find the value of : (i) sin theta (ii) cos theta (iii) cot^(2) theta - "cosec"^(2) theta (iv) 4 cos^(2) theta - 3 sin^(2) theta + 2

If sintheta+sin^2theta=1, then prove that cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta-1=0 Given that sintheta=1-sin^2theta=1-sin^2theta=cos^2theta

Prove that (sin theta- "cosec" theta )(cos theta- sec theta )=(1)/(tan theta + cot theta).

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .