Home
Class 12
MATHS
Consider A=int(0)^(1)(dx)/(1+x^(3)), the...

Consider `A=int_(0)^(1)(dx)/(1+x^(3))`, then A satisfies

A

`A gt (pi)/(4)`

B

`A lt (pi)/(4)`

C

`A=(pi)/(4)`

D

`A=(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( A = \int_0^1 \frac{dx}{1+x^3} \) and determine which of the given options it satisfies, we will follow these steps: ### Step 1: Set up the integral We are given: \[ A = \int_0^1 \frac{dx}{1+x^3} \] ### Step 2: Establish an inequality We know that for \( x \) in the interval \([0, 1]\), \( x^3 < x^2 \). Therefore, we can add 1 to both sides: \[ 1 + x^3 < 1 + x^2 \] Taking the reciprocal (and reversing the inequality): \[ \frac{1}{1+x^3} > \frac{1}{1+x^2} \] ### Step 3: Integrate both sides Now, we can integrate both sides from 0 to 1: \[ \int_0^1 \frac{dx}{1+x^3} > \int_0^1 \frac{dx}{1+x^2} \] This gives us: \[ A > \int_0^1 \frac{dx}{1+x^2} \] ### Step 4: Evaluate the right-hand side integral The integral \( \int_0^1 \frac{dx}{1+x^2} \) can be computed as follows: \[ \int_0^1 \frac{dx}{1+x^2} = \tan^{-1}(x) \bigg|_0^1 = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 5: Combine results From the previous steps, we have: \[ A > \frac{\pi}{4} \] ### Conclusion Thus, we can conclude that: \[ A > \frac{\pi}{4} \] This means the correct option is: **Option A: \( A > \frac{\pi}{4} \)**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider I=int_(0)^(1)(dx)/(1+x^(5)). Then, I satisfies

int_(0)^(1) x dx

int_(0)^(1)(2x)/((1+x^(4)))dx

int_(0)^( pi)(dx)/(1+cos x)

int_(0)^( pi)(dx)/(1+sin x)

int_(0)^(1) (x)/(1-x)^(3//4)dx=

int_(0)^(1) (1)/(1+x+2x^(2))dx

int_(1)^(3)(1)/(x)dx

int_(-1)^(1)(3x+4)dx

int_(0)^(1) (1)/(x^(2)+x+1)dx