Home
Class 12
MATHS
If B(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], ...

If `B_(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B_(n)=adj(B_(n-1), AA n in N` and I is an identity matrix of order 3, then `B_(1)+B_(3)+B_(5)+B_(7)+B_(9)` is equal to

A

`B_(0)`

B

`5B_(0)`

C

`25B_(0)`

D

`5I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the sum \( B_1 + B_3 + B_5 + B_7 + B_9 \) where \( B_n \) is defined recursively as the adjoint of the previous matrix \( B_{n-1} \) starting from \( B_0 \). ### Step-by-Step Solution: 1. **Identify \( B_0 \)**: \[ B_0 = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \] 2. **Calculate \( B_1 \)**: Since \( B_1 = \text{adj}(B_0) \), we need to find the adjoint of \( B_0 \). The adjoint of a matrix is the transpose of its cofactor matrix. - Calculate the cofactors: - \( C_{11} = \begin{vmatrix} 0 & 1 \\ 4 & 3 \end{vmatrix} = (0)(3) - (1)(4) = -4 \) - \( C_{12} = -\begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} = -((1)(3) - (1)(4)) = 1 \) - \( C_{13} = \begin{vmatrix} 1 & 0 \\ 4 & 4 \end{vmatrix} = (1)(4) - (0)(4) = 4 \) - \( C_{21} = -\begin{vmatrix} -3 & -3 \\ 4 & 3 \end{vmatrix} = -((-3)(3) - (-3)(4)) = -(-9 + 12) = -3 \) - \( C_{22} = \begin{vmatrix} -4 & -3 \\ 4 & 3 \end{vmatrix} = (-4)(3) - (-3)(4) = -12 + 12 = 0 \) - \( C_{23} = -\begin{vmatrix} -4 & -3 \\ 1 & 1 \end{vmatrix} = -((-4)(1) - (-3)(1)) = -(-4 + 3) = 1 \) - \( C_{31} = \begin{vmatrix} -3 & -3 \\ 0 & 1 \end{vmatrix} = (-3)(1) - (-3)(0) = -3 \) - \( C_{32} = -\begin{vmatrix} -4 & -3 \\ 1 & 1 \end{vmatrix} = -((-4)(1) - (-3)(1)) = -(-4 + 3) = 1 \) - \( C_{33} = \begin{vmatrix} -4 & -3 \\ 1 & 0 \end{vmatrix} = (-4)(0) - (-3)(1) = 3 \) - Form the cofactor matrix: \[ C = \begin{pmatrix} -4 & 1 & 4 \\ -3 & 0 & 1 \\ -3 & 1 & 3 \end{pmatrix} \] - Transpose the cofactor matrix to get the adjoint: \[ B_1 = \text{adj}(B_0) = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 1 & 3 \end{pmatrix} \] 3. **Observe the pattern**: From the properties of the adjoint, we find that: \[ B_2 = \text{adj}(B_1) = B_0 \] \[ B_3 = \text{adj}(B_2) = B_1 \] \[ B_4 = \text{adj}(B_3) = B_0 \] \[ B_5 = \text{adj}(B_4) = B_1 \] \[ B_6 = \text{adj}(B_5) = B_0 \] \[ B_7 = \text{adj}(B_6) = B_1 \] \[ B_8 = \text{adj}(B_7) = B_0 \] \[ B_9 = \text{adj}(B_8) = B_1 \] Therefore, we can conclude: - \( B_1 = B_1 \) - \( B_3 = B_1 \) - \( B_5 = B_1 \) - \( B_7 = B_1 \) - \( B_9 = B_1 \) 4. **Calculate the sum**: \[ B_1 + B_3 + B_5 + B_7 + B_9 = 5B_1 \] 5. **Final Result**: Since \( B_1 = B_0 \), we have: \[ B_1 + B_3 + B_5 + B_7 + B_9 = 5B_0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n is the identity matrix of order n then (I_n)^-1 (A) does not exist (B) =0 (C) =I_n (D) =nI_n

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

Let A=[[0, 1],[ 0, 0]] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

If AxxB={(a ,1)(b ,3),(a ,3),(b ,1),(a ,2),(b ,2)}, find Aa n dBdot

Let A and B are two matrices of order 3xx3 , where |A|=-2 and |B|=2 , then |A^(-1)adj(B^(-1))adj(2A^(-1))| is equal to

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Let A=[{:(-3,-7,-5),(2,4,3),(1,2,2):}] and B=[{:(a),(b),(1):}] If AB is a scalar multiple of B, then (a) 4a+7b+5=0 (b) a+b+2=0 (c) b-a=4 (d) a+3b=0

If A=[a_(i j)]=[(2, 3,-5),( 1, 4, 9),( 0, 7,-2)] and B=[b_(i j)]=[(2,-1),(-3, 4),( 1, 2)] then find a_(22)+b_(21) (ii) a_(11)b_(11)+a_(22)b_(22)

If A-B=pi//4 , then (1+t a n A)(1-t a n B) is equal to 2 b. 1 c. 0 d. 3