Home
Class 12
MATHS
If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))...

If `I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+C` (where C is the constant of integration), then the range of `y=f(x) AA x in R` is

A

`(-oo, oo)`

B

`[0, oo)`

C

`(o, oo)`

D

`(-oo, 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the integral and find the function \( f(x) \) from the given equation. ### Step 1: Write down the integral We start with the integral given in the question: \[ I = \int \frac{\tan^{-1}(e^x)}{e^x + e^{-x}} \, dx \] ### Step 2: Simplify the denominator The denominator can be rewritten: \[ e^x + e^{-x} = \frac{e^{2x} + 1}{e^x} \] Thus, we can rewrite the integral as: \[ I = \int \frac{\tan^{-1}(e^x)}{\frac{e^{2x} + 1}{e^x}} \, dx = \int \frac{e^x \tan^{-1}(e^x)}{e^{2x} + 1} \, dx \] ### Step 3: Use substitution Let \( t = \tan^{-1}(e^x) \). Then, we differentiate: \[ \frac{dt}{dx} = \frac{1}{1 + (e^x)^2} \cdot e^x = \frac{e^x}{1 + e^{2x}} \] This implies: \[ e^x \, dx = (1 + e^{2x}) \, dt \] ### Step 4: Substitute in the integral Now, substituting \( e^x \, dx \) in the integral: \[ I = \int t \, dt \] The integral of \( t \) is: \[ I = \frac{t^2}{2} + C \] ### Step 5: Substitute back for \( t \) Now, substituting back \( t = \tan^{-1}(e^x) \): \[ I = \frac{(\tan^{-1}(e^x))^2}{2} + C \] ### Step 6: Equate with the given expression We are given that: \[ I = \frac{(\tan^{-1}(f(x)))^2}{2} + C \] From this, we can deduce: \[ \tan^{-1}(f(x)) = \tan^{-1}(e^x) \] ### Step 7: Solve for \( f(x) \) Taking the tangent of both sides gives: \[ f(x) = e^x \] ### Step 8: Determine the range of \( f(x) \) The function \( f(x) = e^x \) is an exponential function. The range of \( e^x \) as \( x \) varies over all real numbers \( \mathbb{R} \) is: \[ (0, \infty) \] ### Final Answer Thus, the range of \( y = f(x) \) for \( x \in \mathbb{R} \) is: \[ (0, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integration), then the range of y=f(x), AA x in R-{-1, 0} is

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

Let inte^(x).x^(2)dx=f(x)e^(x)+C (where, C is the constant of integration). The range of f(x) as x in R is [a, oo) . The value of (a)/(4) is

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the constant of integration). If f((pi)/(4))=1 , then the fundamental period of y=f(x) is