Home
Class 12
MATHS
For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,...

For `xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(x^(2)+1)),0,0),(0,(x)/(4),0),(0,0,(1)/(36))]` be two matrices and `C=AB+(AB)^(2)+….+(AB)^(n).` Then, `Tr(lim_(nrarroo)C)` is equal to (where `Tr(A)` is the trace of the matrix A i.e. the sum of the principle diagonal elements of A)

A

1

B

`(31)/(30)`

C

`(6)/(5)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the trace of the limit of the matrix \( C \) as \( n \) approaches infinity, where \( C = AB + AB^2 + AB^3 + \ldots + AB^n \). ### Step-by-Step Solution: 1. **Define the Matrices \( A \) and \( B \)**: \[ A = \begin{pmatrix} x + \frac{1}{x} & 0 & 0 \\ 0 & \frac{1}{x} & 0 \\ 0 & 0 & 12 \end{pmatrix}, \quad B = \begin{pmatrix} \frac{x}{6(x^2 + 1)} & 0 & 0 \\ 0 & \frac{x}{4} & 0 \\ 0 & 0 & \frac{1}{36} \end{pmatrix} \] 2. **Calculate the Product \( AB \)**: \[ AB = \begin{pmatrix} (x + \frac{1}{x}) \cdot \frac{x}{6(x^2 + 1)} & 0 & 0 \\ 0 & \frac{1}{x} \cdot \frac{x}{4} & 0 \\ 0 & 0 & 12 \cdot \frac{1}{36} \end{pmatrix} \] Simplifying each element: \[ AB = \begin{pmatrix} \frac{x^2 + 1}{6} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \] 3. **Calculate \( AB^2 \)**: \[ AB^2 = AB \cdot AB = \begin{pmatrix} \left(\frac{x^2 + 1}{6}\right)^2 & 0 & 0 \\ 0 & \left(\frac{1}{4}\right)^2 & 0 \\ 0 & 0 & \left(\frac{1}{3}\right)^2 \end{pmatrix} \] Thus, \[ AB^2 = \begin{pmatrix} \frac{(x^2 + 1)^2}{36} & 0 & 0 \\ 0 & \frac{1}{16} & 0 \\ 0 & 0 & \frac{1}{9} \end{pmatrix} \] 4. **Generalize \( AB^n \)**: \[ AB^n = \begin{pmatrix} \left(\frac{x^2 + 1}{6}\right)^n & 0 & 0 \\ 0 & \left(\frac{1}{4}\right)^n & 0 \\ 0 & 0 & \left(\frac{1}{3}\right)^n \end{pmatrix} \] 5. **Sum the Series to Find \( C \)**: \[ C = AB + AB^2 + AB^3 + \ldots + AB^n \] This can be expressed as: \[ C = \begin{pmatrix} \sum_{k=1}^{n} \left(\frac{x^2 + 1}{6}\right)^k & 0 & 0 \\ 0 & \sum_{k=1}^{n} \left(\frac{1}{4}\right)^k & 0 \\ 0 & 0 & \sum_{k=1}^{n} \left(\frac{1}{3}\right)^k \end{pmatrix} \] 6. **Evaluate the Limit as \( n \to \infty \)**: Using the formula for the sum of a geometric series \( S = \frac{a}{1 - r} \): \[ \lim_{n \to \infty} C = \begin{pmatrix} \frac{\frac{x^2 + 1}{6}}{1 - \frac{x^2 + 1}{6}} & 0 & 0 \\ 0 & \frac{\frac{1}{4}}{1 - \frac{1}{4}} & 0 \\ 0 & 0 & \frac{\frac{1}{3}}{1 - \frac{1}{3}} \end{pmatrix} \] 7. **Calculate Each Element**: - For the first element: \[ \frac{\frac{x^2 + 1}{6}}{1 - \frac{x^2 + 1}{6}} = \frac{x^2 + 1}{6 - (x^2 + 1)} = \frac{x^2 + 1}{5 - x^2} \] - For the second element: \[ \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3} \] - For the third element: \[ \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \] 8. **Find the Trace**: The trace of the matrix is the sum of the diagonal elements: \[ \text{Tr}(C) = \frac{x^2 + 1}{5 - x^2} + \frac{1}{3} + \frac{1}{2} \] ### Final Calculation: To find a common denominator for the trace: - The common denominator of \( 5 - x^2 \), \( 3 \), and \( 2 \) is \( 6(5 - x^2) \). - Thus, the trace simplifies to: \[ \text{Tr}(C) = \frac{6(x^2 + 1) + 2(5 - x^2) + 3(5 - x^2)}{6(5 - x^2)} \] Calculating the numerator: \[ 6x^2 + 6 + 10 - 2x^2 + 15 - 3x^2 = 31 \] Thus, the final trace is: \[ \text{Tr}(C) = \frac{31}{6(5 - x^2)} \] ### Conclusion: The trace of the limit as \( n \to \infty \) is: \[ \text{Tr}(\lim_{n \to \infty} C) = \frac{31}{30} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

If A= [(0,1),(1,0)] and B= [(0,-x),(x,0)] , then

lim_(x rarr0)(x(e^(x)-1))/(1-cos x) is equal to

lim_(x rarr0)(1/x)^(1-cos x)

(lim)_(x->0)(sin2x)/x is equal to a. 1 b . 1/2 c. 2 d. 0

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,-4x,-2x]] are two matrices such that AB=(AB)^(-1) and AB!=I then Tr((AB)+(AB)^2+(AB)^3+(AB)^4+(AB)^5+(AB)^6)=

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to (a) 0 (b) 1/e (c) e (d) none of these

Let f(x)=(1+(1)/(x))^(x)(xgt0) and g(x)={:{(xln(1+1/x)",",if0ltxle1),(" "0",",ifx=0):} lim_(xto0^(+))g(x)