Home
Class 12
MATHS
If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2...

If `f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8`,
then the value of `f'(5)` is equal to

A

`-(7)/(13)`

B

0

C

`(5)/(13)`

D

`-(8)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(5) \) for the function \[ f(x) = \sqrt{x - 4\sqrt{x - 4}} + \tan^{-1}\left(\frac{1 - 2x}{2 + x}\right) \] for \( 4 < x < 8 \), we will first simplify the function and then differentiate it. ### Step 1: Simplify the function We start with the first part of the function: \[ \sqrt{x - 4\sqrt{x - 4}} \] Let \( y = \sqrt{x - 4} \). Then, we have: \[ x = y^2 + 4 \] Substituting this into our expression gives: \[ \sqrt{(y^2 + 4) - 4y} = \sqrt{y^2 - 4y + 4} = \sqrt{(y - 2)^2} = |y - 2| \] Since \( y = \sqrt{x - 4} \) and \( x \) is in the range \( (4, 8) \), we have \( y = \sqrt{x - 4} \) which lies between \( 0 \) and \( 2 \). Therefore, \( y - 2 \) is negative in this range, and we can write: \[ |y - 2| = 2 - \sqrt{x - 4} \] Now, substituting back, we have: \[ \sqrt{x - 4\sqrt{x - 4}} = 2 - \sqrt{x - 4} \] Now we can rewrite \( f(x) \): \[ f(x) = 2 - \sqrt{x - 4} + \tan^{-1}\left(\frac{1 - 2x}{2 + x}\right) \] ### Step 2: Differentiate the function Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(2 - \sqrt{x - 4}) + \frac{d}{dx}\left(\tan^{-1}\left(\frac{1 - 2x}{2 + x}\right)\right) \] The derivative of \( 2 \) is \( 0 \), and the derivative of \( -\sqrt{x - 4} \) is: \[ -\frac{1}{2\sqrt{x - 4}} \cdot \frac{d}{dx}(x - 4) = -\frac{1}{2\sqrt{x - 4}} \] Next, we differentiate the second part using the chain rule. Let \( u = \frac{1 - 2x}{2 + x} \): \[ \frac{du}{dx} = \frac{(2 + x)(-2) - (1 - 2x)(1)}{(2 + x)^2} = \frac{-2(2 + x) - (1 - 2x)}{(2 + x)^2} = \frac{-4 - 2x - 1 + 2x}{(2 + x)^2} = \frac{-5}{(2 + x)^2} \] Thus, the derivative of \( \tan^{-1}(u) \) is: \[ \frac{1}{1 + u^2} \cdot \frac{du}{dx} = \frac{1}{1 + \left(\frac{1 - 2x}{2 + x}\right)^2} \cdot \left(\frac{-5}{(2 + x)^2}\right) \] ### Step 3: Evaluate \( f'(5) \) Now we evaluate \( f'(5) \): 1. Calculate \( \sqrt{5 - 4} = \sqrt{1} = 1 \): \[ f'(5) = -\frac{1}{2 \cdot 1} + \text{(the derivative of the second part evaluated at } x = 5) \] 2. For \( u \) at \( x = 5 \): \[ u = \frac{1 - 10}{7} = -\frac{9}{7} \] Thus, \[ 1 + u^2 = 1 + \left(-\frac{9}{7}\right)^2 = 1 + \frac{81}{49} = \frac{49 + 81}{49} = \frac{130}{49} \] So, \[ \frac{1}{1 + u^2} = \frac{49}{130} \] Thus, \[ f'(5) = -\frac{1}{2} + \frac{49}{130} \cdot \frac{-5}{(7)^2} = -\frac{1}{2} - \frac{245}{130} = -\frac{65}{130} - \frac{245}{130} = -\frac{310}{130} = -\frac{31}{13} \] ### Final Answer Therefore, the value of \( f'(5) \) is: \[ \boxed{-\frac{31}{13}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If the function f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1), then the value of |sqrt3f'((1)/(2))| is equal to ("take "sqrt3=1.73)

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

If f(x)+2f(1-x)=6x(AA x in R) , then the vlaue of (3)/(4)((f(8))/(f'(1))) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f'(102^(+)) , is

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

If f(x)=8-x^(2) where -3lt x lt3 , what is the range of values of f(x) ?

Let f(x) = sqrt(x - 1)+sqrt(x+ 24 - 10sqrt(x-1)), 1 lt x lt 26 be a real valued function 1, then f'(x) for 1 lt x lt 26 is

If f(x)=(1)/(sqrt(x+2sqrt(2x-4)))+(1)/(sqrt(x-2sqrt(2x-4))) for xgt2 then find f(11).