Home
Class 12
MATHS
The statement ~(phArr q) is not equivale...

The statement `~(phArr q)` is not equivalent to

A

`~phArr q`

B

`(p^^ ~q) vv (q ^^ ~q)`

C

`(p vv q) ^^ (~p vv ~q)`

D

`(p vv q) rArr (p ^^ q)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining which statement is not equivalent to the negation of \( p \) double implication \( q \) (denoted as \( \sim (p \iff q) \)), we will construct truth tables for the expressions involved and compare them. ### Step 1: Construct the truth table for \( p \) and \( q \) We will consider all possible truth values for \( p \) and \( q \). Since both \( p \) and \( q \) can be either true (T) or false (F), we will have the following combinations: | \( p \) | \( q \) | |---------|---------| | T | T | | T | F | | F | T | | F | F | ### Step 2: Calculate \( p \iff q \) The double implication \( p \iff q \) is true if both \( p \) and \( q \) are either true or both are false. We can fill this in the truth table: | \( p \) | \( q \) | \( p \iff q \) | |---------|---------|----------------| | T | T | T | | T | F | F | | F | T | F | | F | F | T | ### Step 3: Calculate \( \sim (p \iff q) \) Now we will negate the results of \( p \iff q \): | \( p \) | \( q \) | \( p \iff q \) | \( \sim (p \iff q) \) | |---------|---------|----------------|-----------------------| | T | T | T | F | | T | F | F | T | | F | T | F | T | | F | F | T | F | ### Step 4: Analyze the options We need to compare \( \sim (p \iff q) \) with the options provided. Let's denote the options as follows: 1. \( p \land \sim q \) 2. \( \sim p \lor \sim q \) 3. \( p \lor \sim q \) 4. \( p \land q \) We will construct truth tables for each of these options. #### Option 1: \( p \land \sim q \) | \( p \) | \( q \) | \( \sim q \) | \( p \land \sim q \) | |---------|---------|---------------|-----------------------| | T | T | F | F | | T | F | T | T | | F | T | F | F | | F | F | T | F | #### Option 2: \( \sim p \lor \sim q \) | \( p \) | \( q \) | \( \sim p \) | \( \sim q \) | \( \sim p \lor \sim q \) | |---------|---------|---------------|---------------|---------------------------| | T | T | F | F | F | | T | F | F | T | T | | F | T | T | F | T | | F | F | T | T | T | #### Option 3: \( p \lor \sim q \) | \( p \) | \( q \) | \( \sim q \) | \( p \lor \sim q \) | |---------|---------|---------------|----------------------| | T | T | F | T | | T | F | T | T | | F | T | F | F | | F | F | T | T | #### Option 4: \( p \land q \) | \( p \) | \( q \) | \( p \land q \) | |---------|---------|------------------| | T | T | T | | T | F | F | | F | T | F | | F | F | F | ### Step 5: Compare the results Now we compare the results of \( \sim (p \iff q) \) with each option: - \( \sim (p \iff q) \): F, T, T, F - Option 1: F, T, F, F - Option 2: F, T, T, T - Option 3: T, T, F, T - Option 4: T, F, F, F ### Conclusion The only option that does not match the truth values of \( \sim (p \iff q) \) is **Option 2**: \( \sim p \lor \sim q \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The statement (~(phArr q))^^p is equivalent to

The statement ~(~prarrq) is equivalent to (A) pvv~q (B) ~p^^q (C) ~p^^~q (D) ~pvvq

For two statements p and q, the statement ~(pvv(~q)) is equivalent to

The statement ~prarr(qrarrp) is equivalent to

The statement ~ p^^(rvvp) is - (1)equivalent to negation of pvvr (2) equivalent to ~p^^r (3) a tautology (4) a fallacy

Consider three statements p : person 'A' passed in mathematics exam q : Person 'A' passed in physics exam r : Person 'A' passed in chemistry exam, Then the statement ~((~(p =>q)=>r) is equivalent to

The statement ~(p ^^ q) vv q

For any statements p and q , the statement ~(~p^^q) is equivalent to

Statements -1 : ~(pharr~q) is equivalent to p harr q Statement-2: ~( p harr ~q) is a tautology.

The statement p to(q to p) is equivalent to