Home
Class 12
MATHS
If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne ...

If `f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):}` then at x = 0 the function f(x) is

A

continuous if `p gt -1` and differentiable if `p gt 0`

B

Continuous if `p gt0` and differentiable if `p gt -1`

C

Continuous and differetiable if `p gt -1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( f(x) \) at \( x = 0 \), we will analyze its continuity and differentiability based on the given piecewise definition: \[ f(x) = \begin{cases} x^{p+1} \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 1: Check for Continuity at \( x = 0 \) To check if \( f(x) \) is continuous at \( x = 0 \), we need to verify that: \[ \lim_{x \to 0} f(x) = f(0) \] Given that \( f(0) = 0 \), we need to find \( \lim_{x \to 0} f(x) \): \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} x^{p+1} \cos\left(\frac{1}{x}\right) \] Since \( \cos\left(\frac{1}{x}\right) \) oscillates between -1 and 1, we can bound the limit: \[ -x^{p+1} \leq x^{p+1} \cos\left(\frac{1}{x}\right) \leq x^{p+1} \] ### Step 2: Apply the Squeeze Theorem As \( x \to 0 \): - If \( p + 1 > 0 \), then \( x^{p+1} \to 0 \). - If \( p + 1 = 0 \), then \( x^{p+1} \) approaches a constant (which is 1). - If \( p + 1 < 0 \), then \( x^{p+1} \) approaches infinity. Thus, for continuity at \( x = 0 \): \[ \lim_{x \to 0} f(x) = 0 \quad \text{if } p + 1 > 0 \quad (p > -1) \] ### Step 3: Conclusion on Continuity Therefore, \( f(x) \) is continuous at \( x = 0 \) if \( p > -1 \). ### Step 4: Check for Differentiability at \( x = 0 \) To check for differentiability at \( x = 0 \), we need to evaluate the left-hand derivative (LHD) and right-hand derivative (RHD): \[ \text{LHD} = \lim_{h \to 0^-} \frac{f(0) - f(-h)}{-h} = \lim_{h \to 0^-} \frac{0 - (-h)^{p+1} \cos\left(\frac{1}{-h}\right)}{-h} \] This simplifies to: \[ \text{LHD} = \lim_{h \to 0^-} \frac{(-h)^{p+1} \cos\left(-\frac{1}{h}\right)}{h} = \lim_{h \to 0^-} (-h)^{p} \cos\left(-\frac{1}{h}\right) \] Since \( \cos\left(-\frac{1}{h}\right) = \cos\left(\frac{1}{h}\right) \) oscillates between -1 and 1, we can apply the same bounding technique: \[ -h^{p} \leq (-h)^{p} \cos\left(-\frac{1}{h}\right) \leq h^{p} \] ### Step 5: Apply the Squeeze Theorem for Differentiability As \( h \to 0 \): - If \( p > 0 \), then both bounds approach 0. - If \( p = 0 \), the limit approaches 1. - If \( p < 0 \), the limit does not exist. Thus, for differentiability at \( x = 0 \): \[ \text{LHD} = 0 \quad \text{if } p > 0 \] ### Step 6: Conclusion on Differentiability Therefore, \( f(x) \) is differentiable at \( x = 0 \) if \( p > 0 \). ### Final Answer - The function \( f(x) \) is continuous at \( x = 0 \) if \( p > -1 \). - The function \( f(x) \) is differentiable at \( x = 0 \) if \( p > 0 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=a, f(x) is

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0