Home
Class 12
MATHS
The sum (upto two decimal places) of the...

The sum (upto two decimal places) of the infinite series `(7)/(17)+(77)/(17^(2))+(777)/(17^(3))+…………` is

A

1.06

B

2.06

C

3.06

D

4.06

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \( S = \frac{7}{17} + \frac{77}{17^2} + \frac{777}{17^3} + \ldots \), we can follow these steps: ### Step 1: Identify the series structure The series can be expressed as: \[ S = \frac{7}{17} + \frac{77}{17^2} + \frac{777}{17^3} + \ldots \] We can see that the numerators are formed by repeating the digit '7'. ### Step 2: Rewrite the numerators Notice that: - \( 7 = 7 \) - \( 77 = 7 \times 11 \) - \( 777 = 7 \times 111 \) In general, the \( n \)-th term can be expressed as: \[ \text{Numerator} = 7 \times (10^n - 1)/9 \] This gives us: \[ S = \frac{7}{17} + \frac{7 \times 11}{17^2} + \frac{7 \times 111}{17^3} + \ldots \] ### Step 3: Factor out the common term We can factor out \( 7 \): \[ S = 7 \left( \frac{1}{17} + \frac{11}{17^2} + \frac{111}{17^3} + \ldots \right) \] ### Step 4: Set up a new series Let: \[ T = \frac{1}{17} + \frac{11}{17^2} + \frac{111}{17^3} + \ldots \] Now, we can express this series \( T \) in a more manageable form. ### Step 5: Multiply \( T \) by \( \frac{1}{17} \) Multiply \( T \) by \( \frac{1}{17} \): \[ \frac{T}{17} = \frac{1}{17^2} + \frac{11}{17^3} + \frac{111}{17^4} + \ldots \] ### Step 6: Subtract the two series Now, subtract \( \frac{T}{17} \) from \( T \): \[ T - \frac{T}{17} = \left( \frac{1}{17} + \frac{11}{17^2} + \frac{111}{17^3} + \ldots \right) - \left( \frac{1}{17^2} + \frac{11}{17^3} + \frac{111}{17^4} + \ldots \right) \] This simplifies to: \[ T - \frac{T}{17} = \frac{1}{17} + \left( \frac{11 - 1}{17^2} \right) + \left( \frac{111 - 11}{17^3} \right) + \ldots \] This gives: \[ T - \frac{T}{17} = \frac{1}{17} + \frac{10}{17^2} + \frac{100}{17^3} + \ldots \] ### Step 7: Recognize the new series as a geometric series The new series \( \frac{1}{17} + \frac{10}{17^2} + \frac{100}{17^3} + \ldots \) is a geometric series with first term \( \frac{1}{17} \) and common ratio \( \frac{10}{17} \): \[ \text{Sum} = \frac{\frac{1}{17}}{1 - \frac{10}{17}} = \frac{\frac{1}{17}}{\frac{7}{17}} = \frac{1}{7} \] ### Step 8: Solve for \( T \) Now we can substitute back to find \( T \): \[ T - \frac{T}{17} = \frac{1}{7} \] This implies: \[ \frac{16T}{17} = \frac{1}{7} \implies T = \frac{17}{16 \times 7} = \frac{17}{112} \] ### Step 9: Substitute back to find \( S \) Now substituting \( T \) back into \( S \): \[ S = 7T = 7 \times \frac{17}{112} = \frac{119}{112} \] ### Step 10: Convert to decimal Now we convert \( \frac{119}{112} \) to decimal: \[ \frac{119}{112} \approx 1.064 \] Rounding to two decimal places gives: \[ S \approx 1.06 \] ### Final Answer The sum of the infinite series is approximately \( \boxed{1.06} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find: (9)/(17)-(3)/(17)

Find the difference: 13/(17)-3/(17)

Compare the fractions: (-4)/(9)square(-7)/(17)

Sum to n terms the series 7+77+777+....

The sum of 10 terms of the series 0.7+0.77+0.777+……… is -

Find the sum of the given series 3+5+9+17+33 + ..

Sum to n terms the series : 7+77+777+...

Find the sum of n terms of the series " 7 + 77 + 777 + …

Evaluate the sum: 12/(17)+9/(17)

The sum of 50 terms of the series 3/(1^2)+5/(1^2+2^2)+7/(1^2+2^2+3^2)+........... is (a). (100)/(17) (b). (150)/(17) (c). (200)/(51) (d). (50)/(17)