Home
Class 12
MATHS
Evaluate underset(ntooo)lim{cos((x)/(2))...

Evaluate `underset(ntooo)lim{cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}`.

A

`(x)/(sinx)`

B

`(sinx)/(x)`

C

`(sin2x)/(2x)`

D

`(2x)/(sin2x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

Evaluate: ("lim")_(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

lim_(n->oo) co sx/2*co sx/4*co sx/8......co sx/(2^n)

The product ("cos"(x)/(2))*("cos"(x)/(4))*("cos"(x)/(8))* * * * * * * * ("cos"(x)/(256)) is equal to :

Evaluate lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx