Home
Class 12
MATHS
If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(...

If `{[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))]`, then the value of `2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)|` is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrices and their properties. Let's break down the solution step by step. ### Step 1: Identify the matrices We have three matrices: - Matrix A: \((5, 1, 4), (7, 6, 2), (1, 3, 5)\) - Matrix B: \((1, 6, -7), (6, 2, 4), (-7, 4, 3)\) - Matrix C: \((5, 7, 1), (1, 6, 3), (4, 2, 5)\) ### Step 2: Multiply the matrices We need to compute the product of these matrices and raise it to the power of 2020: \[ X = (A \cdot B \cdot C)^{2020} \] ### Step 3: Analyze the symmetry From the video transcript, we learn that matrix B is symmetric. A symmetric matrix has the property that its transpose is equal to itself: \[ B = B^T \] ### Step 4: Use properties of transposes We can take the transpose of the entire expression: \[ X^T = (A \cdot B \cdot C)^{2020}^T = (C^T \cdot B^T \cdot A^T)^{2020} \] Since \(B^T = B\), we have: \[ X^T = (C^T \cdot B \cdot A^T)^{2020} \] ### Step 5: Establish equality Given that \(X = X^T\), we conclude that \(X\) is symmetric. This implies: \[ a_2 = b_1, \quad a_3 = c_1, \quad b_3 = c_2 \] ### Step 6: Calculate the expression Now, we need to evaluate: \[ 2|a_2 - b_1| + 3|a_3 - c_1| + 4|b_3 - c_2| \] Since we established that: - \(a_2 = b_1\) - \(a_3 = c_1\) - \(b_3 = c_2\) This leads to: \[ |a_2 - b_1| = 0, \quad |a_3 - c_1| = 0, \quad |b_3 - c_2| = 0 \] ### Step 7: Substitute values into the expression Substituting these values into the expression: \[ 2 \cdot 0 + 3 \cdot 0 + 4 \cdot 0 = 0 \] ### Final Answer Thus, the value of \(2|a_2 - b_1| + 3|a_3 - c_1| + 4|b_3 - c_2|\) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If (1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1) , then the value of a_(7) is

If |a_(1)|gt|a_(2)|+|a_(3)|,|b_(2)|gt|b_(1)|+|b_(3)| and |c_(2)|gt|c_(1)|+|c_(2)| then show that |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|ne0.

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

If a_(1)^(2)+a_(2)^(2)+a_(3)^(2)=1, b_(1)^(2)+b_(2)^(2)+b_(3)^(2)=4, c_(1)^(2)+c_(2)^(2)+c_3^(2)=9, a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3)=0, a_(1)c_(1)+a_(2)c_(2)+a_(3)c_(3)=0, b_(1)c_(1)+b_(2)c_(2)+b_(3)c_(3)=0 and A[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then |A|^(4) is equal to

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

if A_(1) ,B_(1),C_(1) ……. are respectively the cofactors of the elements a_(1) ,b_(1),c_(1)…… of the determinant Delta = |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}|, Delta ne 0 then the value of |{:(B_(2),,C_(2)),(B_(3),,C_(3)):}| is equal to

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is