Home
Class 12
MATHS
If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^...

If `f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1` then the minimum value of `f(x)` is

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1), then the value of |sqrt3f'((1)/(2))| is equal to ("take "sqrt3=1.73)

If 02 le x le 2 , the maximum value of f(x)=1-x^(2) is

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

if f(x) ={{:(-sqrt(1-x^(2))),(0 le x le 1);((-x)(x gt 1)):} then (1) Maximum of f(x) exist at x=1 (2) Maximum of f(x) doesn't exists (3) Minimum of f^(-1)(x) exist at x=-1 (4) Minimum of f^(-1) exist at x=1

f(x)=abs(x-1)+abs(x-2), -1 le x le 3 . Find the range of f(x).

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (x) AA x in [-1, 3] is:

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

AA|x|le1,cos^(-1)(-x)=

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

Let f(x) = minimum (x+1, sqrt(1-x))" for all "x le 1. Then the area bounded by y=f(x) and the x-axis is