Home
Class 12
MATHS
(1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2...

`(1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2` + ….to 10 terms , the sum is :

A

`1390/9`

B

`1790/9`

C

`1990/9`

D

`2290/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `(1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ...` up to 10 terms, we can follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers into improper fractions: - \(1 \frac{2}{3} = \frac{5}{3}\) - \(2 \frac{1}{3} = \frac{7}{3}\) - \(3 = \frac{9}{3}\) - \(3 \frac{2}{3} = \frac{11}{3}\) Thus, the series can be rewritten as: \[ \left(\frac{5}{3}\right)^2 + \left(\frac{7}{3}\right)^2 + \left(\frac{9}{3}\right)^2 + \left(\frac{11}{3}\right)^2 + \ldots \] ### Step 2: Identify the General Term The numerators of the fractions form an arithmetic progression (AP): \(5, 7, 9, 11, \ldots\). The general term \(T_n\) can be expressed as: \[ T_n = \left(5 + (n-1) \cdot 2\right)^2 = (3 + 2n)^2 \] ### Step 3: Write the Series in Summation Form We can express the sum of the first 10 terms as: \[ S = \sum_{n=1}^{10} T_n = \sum_{n=1}^{10} (3 + 2n)^2 \] ### Step 4: Expand the Square Expanding the square gives: \[ (3 + 2n)^2 = 9 + 12n + 4n^2 \] Thus, the sum becomes: \[ S = \sum_{n=1}^{10} (9 + 12n + 4n^2) = \sum_{n=1}^{10} 9 + \sum_{n=1}^{10} 12n + \sum_{n=1}^{10} 4n^2 \] ### Step 5: Calculate Each Component of the Sum 1. **Sum of constants**: \[ \sum_{n=1}^{10} 9 = 9 \times 10 = 90 \] 2. **Sum of first 10 natural numbers**: \[ \sum_{n=1}^{10} n = \frac{10 \times 11}{2} = 55 \] Therefore, \[ \sum_{n=1}^{10} 12n = 12 \times 55 = 660 \] 3. **Sum of squares of the first 10 natural numbers**: \[ \sum_{n=1}^{10} n^2 = \frac{10 \times 11 \times 21}{6} = 385 \] Therefore, \[ \sum_{n=1}^{10} 4n^2 = 4 \times 385 = 1540 \] ### Step 6: Combine All Parts Now, we can combine all parts to find \(S\): \[ S = 90 + 660 + 1540 = 2290 \] ### Step 7: Adjust for the Common Factor Since we factored out \(\frac{1}{9}\) in the beginning, we need to multiply \(S\) by \(\frac{1}{9}\): \[ \text{Final Sum} = \frac{2290}{9} \] ### Final Answer Thus, the sum of the series up to 10 terms is: \[ \frac{2290}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of first 20 terms of 3/1^2 + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) +... upto 20 terms is :

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2)+2^(2))/(1^(3)+2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

STATEMENT-1 : If 1^(2) - 2^(2) + 3^(2) …….."to" 21 terms is 231 STATEMENT-2 : If 1^(3) - 2^(3) + 3^(3) - 4^(5) ……….. to 15 terms is 1856 STATEMENT-3 : If 1^(1) + 3^(2) + 5^(2) …….. to 8 terms is 689

For the series, S=1+1/((1+3))(1+2)^2+1/((1+3+5))(1+2+3)^2+1/((1+3+5+7))(1+2+3+4)^2 +... 7th term is 16 7th term is 18 Sum of first 10 terms is (505)/4 Sum of first 10 terms is (45)/4

The sum of the series : 1 + (1)/(1 + 2) + (1)/(1 + 2 + 3)+ .... up to 10 terms, is

1 + ""^2C_1x + ""^3C_2 x^2+ ""^4C_3 x^3 + ….. to oo terms can be summed up if

The sum (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) +2^(2) + 3^(2))... upto 10th term is

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to