Home
Class 12
MATHS
If A,B, C and D are four distinct points...

If A,B, C and D are four distinct points in space that `vec(AB)` is not perpendicular to `vec(CD)` and satisfies `(AB).(CD)=k(|vec(AD)|^(2)+ |vec(BC)|^(2)- |vec(BD)|^(2))`, then find the value of k .

A

`1//2`

B

`1`

C

`3//2`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A ,B ,C ,D are four distinct point in space such that vec(A B) is not perpendicular to vec(C D) and satisfies vec (A B).vec (C D)=k(| vec(A D)|^2+| vec(B C)|^2-| vec(A C)|^2-| vec(B D)|^2), then find the value of kdot

If A ,B ,C ,D are four distinct point in space such that A B is not perpendicular to C D and satisfies vec A Bdot vec C D=k(| vec A D|^2+| vec B C|^2-| vec A C|^2=| vec B D|^2), then find the value of kdot

A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(BC)|=7, |vec(CD)|=11 and |vec(DA)|=9 . Then find the value of vec(AC)*vec(BD) .

If A,B,C,D are any four points in space prove that vec(AB)xxvec(CD)+vec(BC)xvec(AD)+vec(CA)xxvec(BD)=2vec(AB)xxvec(CA)

If A,B,C,D are four points in space, then |vec(AB)xvec(CD)+vec(BC)xxvec(AD)+vec(CA)xxvec(BD)|=k (are of /_\ABC) where k= (A) 5 (B) 4 (C) 2 (D) none of these

A,B,C,D are four points in the space and satisfy | vec A B|=3,| vec B C|=7,| vec C D|=11&| vec D A|=9 , then value of vec (AC). vec(BD) .

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If A ,B ,C ,D be any four points in space, prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (Area of triangle ABC)

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .