Home
Class 12
MATHS
If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1)...

If `f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1)))`, then `sum_(r = 0)^(9) f(r )` is

A

`tan^(-1) (1024)`

B

`tan^(-1)((1023)/(1024))`

C

`tan^(-1)((1023)/(1025))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( \sum_{r=0}^{9} f(r) \) where \( f(x) = \tan^{-1}\left(\frac{2^x}{1 + 2^{2x + 1}}\right) \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We start with the function: \[ f(x) = \tan^{-1}\left(\frac{2^x}{1 + 2^{2x + 1}}\right) \] We can rewrite the denominator: \[ 1 + 2^{2x + 1} = 1 + 2 \cdot 2^{2x} = 1 + 2 \cdot (2^x)^2 \] Thus, we have: \[ f(x) = \tan^{-1}\left(\frac{2^x}{1 + 2 \cdot (2^x)^2}\right) \] 2. **Use the Identity for Tangent Inverse**: We can use the identity: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] Here, we can express \( f(x) \) in a different form: \[ f(x) = \tan^{-1}(2^{x}) - \tan^{-1}(2^{x + 1}) \] 3. **Sum the Function**: Now we compute the sum: \[ \sum_{r=0}^{9} f(r) = \sum_{r=0}^{9} \left( \tan^{-1}(2^r) - \tan^{-1}(2^{r + 1}) \right) \] This is a telescoping series. Most terms will cancel out: \[ = \left( \tan^{-1}(2^0) - \tan^{-1}(2^{10}) \right) \] Since \( 2^0 = 1 \) and \( 2^{10} = 1024 \), we have: \[ = \tan^{-1}(1) - \tan^{-1}(1024) \] 4. **Evaluate the Inverse Tangent**: We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \] Therefore: \[ \sum_{r=0}^{9} f(r) = \frac{\pi}{4} - \tan^{-1}(1024) \] 5. **Final Expression**: The final result can be expressed as: \[ \sum_{r=0}^{9} f(r) = \tan^{-1}\left(\frac{1}{1024}\right) \] ### Final Result: Thus, the required sum is: \[ \sum_{r=0}^{9} f(r) = \tan^{-1}(1023) - \tan^{-1}(1024) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is _______ .

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =