Home
Class 12
MATHS
Let f(x) = sin^(3)x - 3 sinx + 6, AA x ...

Let `f(x) = sin^(3)x - 3 sinx + 6, AA x` `in (0, pi)`.The number of local maximum/maxima of the function f(x) is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of local maxima of the function \( f(x) = \sin^3 x - 3 \sin x + 6 \) for \( x \in (0, \pi) \), we will follow these steps: ### Step 1: Differentiate the function We start by finding the first derivative of \( f(x) \). \[ f'(x) = \frac{d}{dx}(\sin^3 x - 3 \sin x + 6) \] Using the chain rule and the derivative of sine, we get: \[ f'(x) = 3 \sin^2 x \cdot \cos x - 3 \cos x \] ### Step 2: Factor the derivative Next, we can factor out \( 3 \cos x \): \[ f'(x) = 3 \cos x (\sin^2 x - 1) \] ### Step 3: Set the derivative to zero To find critical points, we set \( f'(x) = 0 \): \[ 3 \cos x (\sin^2 x - 1) = 0 \] This gives us two equations to solve: 1. \( \cos x = 0 \) 2. \( \sin^2 x - 1 = 0 \) ### Step 4: Solve for critical points **For \( \cos x = 0 \):** This occurs at \( x = \frac{\pi}{2} \) within the interval \( (0, \pi) \). **For \( \sin^2 x - 1 = 0 \):** This simplifies to \( \sin^2 x = 1 \), which gives \( \sin x = \pm 1 \). In the interval \( (0, \pi) \), this occurs at \( x = \frac{\pi}{2} \). ### Step 5: Analyze the critical points Now we have one critical point \( x = \frac{\pi}{2} \). We will check the behavior of \( f'(x) \) around this point to determine if it is a local maximum or minimum. - For \( x < \frac{\pi}{2} \) (e.g., \( x = \frac{\pi}{4} \)): - \( \cos(\frac{\pi}{4}) > 0 \) and \( \sin^2(\frac{\pi}{4}) < 1 \) → \( f'(\frac{\pi}{4}) > 0 \) - For \( x > \frac{\pi}{2} \) (e.g., \( x = \frac{3\pi}{4} \)): - \( \cos(\frac{3\pi}{4}) < 0 \) and \( \sin^2(\frac{3\pi}{4}) < 1 \) → \( f'(\frac{3\pi}{4}) < 0 \) ### Step 6: Conclusion Since \( f'(x) \) changes from positive to negative at \( x = \frac{\pi}{2} \), this indicates that \( x = \frac{\pi}{2} \) is a local maximum. ### Final Answer Thus, the number of local maxima of the function \( f(x) \) in the interval \( (0, \pi) \) is **1**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all the points of local maxima and minima of the function f(x)=x^3-6x^2+9x-8 .

Find all the points of local maxima and local minima of the function f(x)=x^3-6x^2+12 x-8 .

Find all points of local maxima and local minima of the function f given by f(x)=x^3-3x+3 .

Find all the points of local maxima and local minima of the function f(x)=x^3-6x^2+12 x-8.

Find the points of local maxima and local minima of the function f(x)=2x^(3)-3x^(2)-12x+8 .

The function f(x)=2sin x-e^(x), AA x in [0, pi] has

The number of local minima/maximum for the function y=x^(2)-2sinx, AA x in (0, (pi)/(2)) is

Let f(x)=-sin^3x+3sin^2x+5 on [0,pi/2] . Find the local maximum and local minimum of f(x)dot

Let f(x) = Maximum {sin x, cos x} AA x in R . minimum value of f (x) is

Find all the points of local maxima and local minima of the function f given by f(x)=2x^3-6x^2+6x+5 .