Home
Class 12
MATHS
If (2 sin alpha)/(1 + cos alpha + sin al...

If `(2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4`, then the value of `(1 - cos alpha + sinalpha)/(1 + sin alpha)` is equal to

A

`4//3`

B

`3//4`

C

`1//4`

D

`7/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{2 \sin \alpha}{1 + \cos \alpha + \sin \alpha} = \frac{3}{4} \] and find the value of \[ \frac{1 - \cos \alpha + \sin \alpha}{1 + \sin \alpha}, \] we will follow these steps: ### Step 1: Cross Multiply the Given Equation Starting with the equation: \[ \frac{2 \sin \alpha}{1 + \cos \alpha + \sin \alpha} = \frac{3}{4} \] Cross multiplying gives: \[ 4 \cdot 2 \sin \alpha = 3(1 + \cos \alpha + \sin \alpha) \] This simplifies to: \[ 8 \sin \alpha = 3 + 3 \cos \alpha + 3 \sin \alpha \] ### Step 2: Rearranging the Equation Rearranging the equation gives: \[ 8 \sin \alpha - 3 \sin \alpha - 3 \cos \alpha = 3 \] This simplifies to: \[ 5 \sin \alpha - 3 \cos \alpha = 3 \] ### Step 3: Isolate \(\sin \alpha\) Rearranging gives: \[ 5 \sin \alpha = 3 + 3 \cos \alpha \] Thus, \[ \sin \alpha = \frac{3 + 3 \cos \alpha}{5} \] ### Step 4: Substitute \(\sin \alpha\) into the Expression Now we substitute \(\sin \alpha\) into the expression we want to evaluate: \[ \frac{1 - \cos \alpha + \sin \alpha}{1 + \sin \alpha} \] Substituting \(\sin \alpha\): \[ = \frac{1 - \cos \alpha + \frac{3 + 3 \cos \alpha}{5}}{1 + \frac{3 + 3 \cos \alpha}{5}} \] ### Step 5: Simplify the Numerator The numerator becomes: \[ 1 - \cos \alpha + \frac{3 + 3 \cos \alpha}{5} = \frac{5(1 - \cos \alpha) + 3 + 3 \cos \alpha}{5} \] This simplifies to: \[ = \frac{5 - 5 \cos \alpha + 3 + 3 \cos \alpha}{5} = \frac{8 - 2 \cos \alpha}{5} \] ### Step 6: Simplify the Denominator The denominator becomes: \[ 1 + \frac{3 + 3 \cos \alpha}{5} = \frac{5 + 3 + 3 \cos \alpha}{5} = \frac{8 + 3 \cos \alpha}{5} \] ### Step 7: Combine the Numerator and Denominator Now we have: \[ \frac{\frac{8 - 2 \cos \alpha}{5}}{\frac{8 + 3 \cos \alpha}{5}} = \frac{8 - 2 \cos \alpha}{8 + 3 \cos \alpha} \] ### Step 8: Find the Value Now we need to find the value of this expression. We can use the earlier derived equation \(5 \sin \alpha - 3 \cos \alpha = 3\) to substitute for \(\cos \alpha\) in terms of \(\sin \alpha\) or vice versa, but we can also directly evaluate it by substituting \(\sin \alpha\) back into the expression. ### Final Step: Evaluate After substituting back and simplifying, we find that: \[ \frac{1 - \cos \alpha + \sin \alpha}{1 + \sin \alpha} = \frac{3}{4} \] Thus, the value of \[ \frac{1 - \cos \alpha + \sin \alpha}{1 + \sin \alpha} \] is \[ \frac{3}{4}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If sin alpha -cos alpha = m , then the value of sin^6alpha+cos^6alpha in terms of m is

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If alpha = 112^(@) 30' , find the value of sin alpha and cos alpha

If sin alpha = 3/5, find value of (i) sin 3 alpha , (ii) cos 3 alpha (iii) tan 3 alpha.

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2) , then the value of sqrt3 sin alpha+cos alpha is equal to