Home
Class 12
MATHS
The value of lim(x to (pi)/4) (sin 2x )^...

The value of `lim_(x to (pi)/4) (sin 2x )^(sec^2 2x)` is equal to

A

`-1/2`

B

`1/2`

C

`e^(-1//2)`

D

`e^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{4}} (\sin 2x)^{\sec^2 2x} \), we can follow these steps: ### Step 1: Identify the Indeterminate Form First, we substitute \( x = \frac{\pi}{4} \): - \( \sin 2x = \sin \left(2 \cdot \frac{\pi}{4}\right) = \sin \left(\frac{\pi}{2}\right) = 1 \) - \( \sec^2 2x = \sec^2 \left(2 \cdot \frac{\pi}{4}\right) = \sec^2 \left(\frac{\pi}{2}\right) = \infty \) Thus, we have the form \( 1^\infty \), which is an indeterminate form. ### Step 2: Rewrite the Limit We can rewrite the limit in a form that is easier to evaluate: Let \( y = (\sin 2x)^{\sec^2 2x} \). Taking the natural logarithm on both sides: \[ \ln y = \sec^2 2x \cdot \ln(\sin 2x) \] Now, we need to evaluate: \[ \lim_{x \to \frac{\pi}{4}} \ln y = \lim_{x \to \frac{\pi}{4}} \sec^2 2x \cdot \ln(\sin 2x) \] ### Step 3: Evaluate the Limit Substituting \( x = \frac{\pi}{4} \) gives us: - \( \ln(\sin 2x) = \ln(1) = 0 \) - \( \sec^2 2x \) approaches \( \infty \) Thus, we have the form \( \infty \cdot 0 \), which is still indeterminate. We can rewrite it as: \[ \lim_{x \to \frac{\pi}{4}} \frac{\ln(\sin 2x)}{\cos^2 2x} \] ### Step 4: Apply L'Hôpital's Rule Since we have the form \( \frac{0}{0} \), we can apply L'Hôpital's Rule: Differentiate the numerator and denominator: - The derivative of \( \ln(\sin 2x) \) is \( \frac{2 \cos 2x}{\sin 2x} \) - The derivative of \( \cos^2 2x \) is \( -4 \cos 2x \sin 2x \) Now we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{\frac{2 \cos 2x}{\sin 2x}}{-4 \cos 2x \sin 2x} \] This simplifies to: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\frac{1}{2 \sin^2 2x}}{1} \] ### Step 5: Evaluate the Limit Substituting \( x = \frac{\pi}{4} \): \[ \sin 2x = \sin \left(\frac{\pi}{2}\right) = 1 \quad \Rightarrow \quad \sin^2 2x = 1 \] Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} -\frac{1}{2} = -\frac{1}{2} \] ### Step 6: Exponentiate to Find \( y \) Since \( \ln y = -\frac{1}{2} \), we exponentiate to find \( y \): \[ y = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to \frac{\pi}{4}} (\sin 2x)^{\sec^2 2x} = \frac{1}{\sqrt{e}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

The value of lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

The value of lim_(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+..........+n^(sec^(2)x)}^(cos^(2)x) is

The value of lim_(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) equals

Evaluate lim_(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

The value of lim_(xrarrpi)(tan(picos^(2)x))/(sin^(2)(2x)) is equal to

lim_(x to 4) (x^(2) - 16)/(sqrt(x) - 2) is equal to

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals