Home
Class 12
MATHS
Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd")...

Let `f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):}` where [.] denotes greatest integer function, then

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):} [.] denotes the greatest integer function, then int_(-2)^(4) dx is equal to

Let f : R->R be given by f(x) = {|x-[x]| , when [x] is odd and |x-[x]-1| , when [x] is even ,where [.] denotes the greatest integer function , then int_-2^4 f(x) dx is equal to (a) (5)/(2) (b) (3)/(2) (c) 5 (d) 3

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then