Home
Class 12
MATHS
If sinA and cosA are the roots of the eq...

If `sinA and cosA` are the roots of the equation `4x^(2)-3x+a=0, sinA+cosA+tanA+cotA+secA+"cosec "A=7 and 0 lt A lt (pi)/(2)`, then the value of a must be

A

`(7)/(25)`

B

`(25)/(7)`

C

`(28)/(25)`

D

`(25)/(28)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) given that \( \sin A \) and \( \cos A \) are the roots of the equation \( 4x^2 - 3x + a = 0 \) and that \( \sin A + \cos A + \tan A + \cot A + \sec A + \csc A = 7 \) for \( 0 < A < \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Identify the Sum and Product of Roots**: - The sum of the roots \( \sin A + \cos A \) can be expressed as: \[ \sin A + \cos A = -\frac{-3}{4} = \frac{3}{4} \] - The product of the roots \( \sin A \cos A \) can be expressed as: \[ \sin A \cos A = \frac{a}{4} \] 2. **Use the Identity for \( \sin A + \cos A \)**: - We know that: \[ \sin^2 A + \cos^2 A = 1 \] - Let \( \sin A + \cos A = x \). Then: \[ x^2 = \sin^2 A + \cos^2 A + 2\sin A \cos A = 1 + 2\sin A \cos A \] - Substituting \( x = \frac{3}{4} \): \[ \left(\frac{3}{4}\right)^2 = 1 + 2 \cdot \frac{a}{4} \] \[ \frac{9}{16} = 1 + \frac{a}{2} \] 3. **Solve for \( a \)**: - Rearranging gives: \[ \frac{9}{16} - 1 = \frac{a}{2} \] \[ \frac{9}{16} - \frac{16}{16} = \frac{a}{2} \] \[ -\frac{7}{16} = \frac{a}{2} \] \[ a = -\frac{7}{8} \] 4. **Evaluate the Expression**: - Now we need to evaluate \( \sin A + \cos A + \tan A + \cot A + \sec A + \csc A \): - From \( \sin A + \cos A = \frac{3}{4} \). - We can calculate \( \tan A \) and \( \cot A \): \[ \tan A = \frac{\sin A}{\cos A}, \quad \cot A = \frac{\cos A}{\sin A} \] - Using the values of \( \sin A \) and \( \cos A \), we can find \( \sec A \) and \( \csc A \): \[ \sec A = \frac{1}{\cos A}, \quad \csc A = \frac{1}{\sin A} \] 5. **Final Calculation**: - Substitute all values back into the equation to check if it equals 7. ### Conclusion: The value of \( a \) must be \( \frac{28}{25} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

Prove that : (sinA-cosA)(cotA +tanA)=secA-"cosec"A

If tan x= (3)/(4) " where " pi lt x lt (3pi)/( 2), value of tan ""(x)/(2) is

Prove that: sinA(1+tanA)+cosA(1+cotA)= secA+"cosec"A

If sinA=-4/5 and pi lt A lt (3pi)/2 , find the value of (cosecA+cotA)/(secA-tanA)

If the product of the roots of the equation 2x^2 + ax + 4 sina = 0 is 1, then roots will be imaginary, if

If alpha, beta be the roots of 4x^(8) - 16x + c = 0, c in R such that 1 lt alpha lt 2 and 2 lt beta lt 3 , then the number of integral values of c is

If 0 lt A lt pi//2 and sinA + cosA + tan A + cotA + secA + cosec A=7 and sinA and cosA are roots of equation 4x^(2) - 3x +a=0 . Then value of 25a is:

If sinA+cosA=0 and A lies in 4th quadrant, find the values of sinA and cosA.

If sinA=cosA,then find the value of sin 2A.