Home
Class 12
MATHS
The statement phArr q is not equivalent ...

The statement `phArr q` is not equivalent to

A

`(pvvq)rArr (p^^q)`

B

`(p^^q)rArr(pvvq)`

C

`(pvvq)hArr (p^^q)`

D

`~(pvvq)vv(p^^q)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining which statement is not equivalent to \( p \equiv q \), we will analyze the logical equivalence of the given options step by step. ### Step 1: Understand the equivalence \( p \equiv q \) The statement \( p \equiv q \) (p is equivalent to q) is true when both p and q have the same truth values. This can be summarized in a truth table: | p | q | \( p \equiv q \) | |-------|-------|------------------| | True | True | True | | True | False | False | | False | True | False | | False | False | True | ### Step 2: Analyze the options We need to evaluate each option to see if it is equivalent to \( p \equiv q \). #### Option A: \( p \lor q \implies p \land q \) 1. Create a truth table for \( p \lor q \) and \( p \land q \): - \( p \lor q \) (p or q) is true if at least one of p or q is true. - \( p \land q \) (p and q) is true only if both p and q are true. | p | q | \( p \lor q \) | \( p \land q \) | \( p \lor q \implies p \land q \) | |-------|-------|----------------|------------------|------------------------------------| | True | True | True | True | True | | True | False | True | False | False | | False | True | True | False | False | | False | False | False | False | True | The result for \( p \lor q \implies p \land q \) is True, False, False, True, which does not match \( p \equiv q \). #### Option B: \( p \land q \implies p \lor q \) 1. Create a truth table for \( p \land q \) and \( p \lor q \): | p | q | \( p \land q \) | \( p \lor q \) | \( p \land q \implies p \lor q \) | |-------|-------|------------------|----------------|------------------------------------| | True | True | True | True | True | | True | False | False | True | True | | False | True | False | True | True | | False | False | False | False | True | The result for \( p \land q \implies p \lor q \) is True, True, True, True, which matches \( p \equiv q \). #### Option C: \( p \lor q \equiv p \land q \) 1. Create a truth table for \( p \lor q \) and \( p \land q \): | p | q | \( p \lor q \) | \( p \land q \) | \( p \lor q \equiv p \land q \) | |-------|-------|----------------|------------------|-----------------------------------| | True | True | True | True | True | | True | False | True | False | False | | False | True | True | False | False | | False | False | False | False | True | The result for \( p \lor q \equiv p \land q \) is True, False, False, True, which does not match \( p \equiv q \). #### Option D: \( p \equiv q \) This is the original statement, so it is equivalent by definition. ### Conclusion From the analysis, we find that: - Option A and Option C are not equivalent to \( p \equiv q \). - However, the question asks for the one that is not equivalent, and since the options are typically singular, we can conclude that **Option A** is the answer. ### Final Answer The statement \( p \lor q \implies p \land q \) is not equivalent to \( p \equiv q \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The statement (~(phArr q))^^p is equivalent to

The statement ~(~prarrq) is equivalent to (A) pvv~q (B) ~p^^q (C) ~p^^~q (D) ~pvvq

The statement ~prarr(qrarrp) is equivalent to

The statement p to(q to p) is equivalent to

If p and q are two statements , then which of the following statements is not equivalent to phArr(prArrq) ?

Consider three statements p : person 'A' passed in mathematics exam q : Person 'A' passed in physics exam r : Person 'A' passed in chemistry exam, Then the statement ~((~(p =>q)=>r) is equivalent to

For two statements p and q, the statement ~(pvv(~q)) is equivalent to

For any statements p and q , the statement ~(~p^^q) is equivalent to

Statements -1 : ~(pharr~q) is equivalent to p harr q Statement-2: ~( p harr ~q) is a tautology.

Let p and q be two statements. Amongst the following , the statement that is equivalent to p to q is