Home
Class 12
MATHS
The value of int(0)^(oo)(dx)/(1+x^(4)) i...

The value of `int_(0)^(oo)(dx)/(1+x^(4))` is equal to

A

`(pi)/(2sqrt2)`

B

`(pi)/(2)`

C

`(pi)/(sqrt2)`

D

`2pisqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^\infty \frac{dx}{1+x^4} \), we can use a symmetry property and some substitutions. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^\infty \frac{dx}{1+x^4} \] ### Step 2: Use a Substitution To evaluate this integral, we can use the substitution \( x = \frac{1}{t} \). Then, \( dx = -\frac{1}{t^2} dt \). The limits change as follows: - When \( x = 0 \), \( t \to \infty \) - When \( x \to \infty \), \( t = 0 \) Thus, the integral becomes: \[ I = \int_\infty^0 \frac{-\frac{1}{t^2}}{1+\left(\frac{1}{t}\right)^4} dt = \int_0^\infty \frac{dt}{t^2 \left(1 + \frac{1}{t^4}\right)} = \int_0^\infty \frac{dt}{\frac{t^4 + 1}{t^2}} = \int_0^\infty \frac{t^2}{t^4 + 1} dt \] ### Step 3: Combine the Integrals Now we have two expressions for \( I \): 1. \( I = \int_0^\infty \frac{dx}{1+x^4} \) 2. \( I = \int_0^\infty \frac{x^2}{1+x^4} dx \) Adding these two integrals gives: \[ 2I = \int_0^\infty \left( \frac{1+x^2}{1+x^4} \right) dx \] ### Step 4: Simplify the Integral Now, simplify the integrand: \[ \frac{1+x^2}{1+x^4} = \frac{1}{1+x^4} + \frac{x^2}{1+x^4} \] Thus, \[ 2I = \int_0^\infty \frac{dx}{1+x^4} + \int_0^\infty \frac{x^2}{1+x^4} dx \] ### Step 5: Evaluate the Integral Notice that: \[ \int_0^\infty \frac{x^2}{1+x^4} dx = \int_0^\infty \frac{u}{1+u^2} \cdot \frac{du}{2} \quad \text{(where \( u = x^2 \))} \] This integral can be evaluated using the substitution \( u = x^2 \), leading to: \[ \int_0^\infty \frac{u}{1+u^2} du = \frac{\pi}{2} \] Thus, \[ \int_0^\infty \frac{x^2}{1+x^4} dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4} \] ### Step 6: Final Calculation Now we can substitute back: \[ 2I = I + \frac{\pi}{4} \] This gives: \[ I = \frac{\pi}{4} \] Thus, the final value of the integral is: \[ I = \frac{\pi}{4} \] ### Conclusion The value of the integral \( \int_0^\infty \frac{dx}{1+x^4} \) is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

The value of int_(0)^(2//3)(dx)/(4+9x^(2)) is equal to

The value of int_0^oo(x dx)/((1+x)(1+x^2)) is equal to

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to