Home
Class 12
MATHS
Consider the function f(x)=tan^(-1){(3x-...

Consider the function `f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0.` If `g(x)` is the inverse function of `f(x)`, then the value of `g'((pi)/(4))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( g'\left(\frac{\pi}{4}\right) \) where \( g(x) \) is the inverse function of \( f(x) = \tan^{-1}\left(\frac{3x - 2}{3 + 2x}\right) \), we can follow these steps: ### Step 1: Understand the relationship between \( f \) and \( g \) Since \( g(x) \) is the inverse of \( f(x) \), we have: \[ f(g(x)) = x \] Differentiating both sides with respect to \( x \) gives us: \[ f'(g(x)) \cdot g'(x) = 1 \] Thus, we can express \( g'(x) \) as: \[ g'(x) = \frac{1}{f'(g(x))} \] ### Step 2: Find \( g\left(\frac{\pi}{4}\right) \) We need to find \( g\left(\frac{\pi}{4}\right) \). This means we need to find \( x \) such that: \[ f(x) = \frac{\pi}{4} \] This leads us to solve: \[ \tan^{-1}\left(\frac{3x - 2}{3 + 2x}\right) = \frac{\pi}{4} \] Taking the tangent of both sides: \[ \frac{3x - 2}{3 + 2x} = 1 \] ### Step 3: Solve for \( x \) Cross-multiplying gives: \[ 3x - 2 = 3 + 2x \] Rearranging the equation: \[ 3x - 2x = 3 + 2 \] \[ x = 5 \] Thus, \( g\left(\frac{\pi}{4}\right) = 5 \). ### Step 4: Find \( f'(x) \) Next, we need to find \( f'(x) \). The function is: \[ f(x) = \tan^{-1}\left(\frac{3x - 2}{3 + 2x}\right) \] Using the derivative of \( \tan^{-1}(u) \), we have: \[ f'(x) = \frac{1}{1 + \left(\frac{3x - 2}{3 + 2x}\right)^2} \cdot \frac{d}{dx}\left(\frac{3x - 2}{3 + 2x}\right) \] ### Step 5: Differentiate \( \frac{3x - 2}{3 + 2x} \) Using the quotient rule: \[ \frac{d}{dx}\left(\frac{3x - 2}{3 + 2x}\right) = \frac{(3)(3 + 2x) - (3x - 2)(2)}{(3 + 2x)^2} \] Calculating the numerator: \[ 9 + 6x - (6x - 4) = 9 + 6x - 6x + 4 = 13 \] Thus: \[ \frac{d}{dx}\left(\frac{3x - 2}{3 + 2x}\right) = \frac{13}{(3 + 2x)^2} \] ### Step 6: Substitute back into \( f'(x) \) Now substituting back: \[ f'(x) = \frac{1}{1 + \left(\frac{3x - 2}{3 + 2x}\right)^2} \cdot \frac{13}{(3 + 2x)^2} \] ### Step 7: Evaluate \( f'(5) \) Substituting \( x = 5 \): \[ f'(5) = \frac{1}{1 + \left(\frac{3(5) - 2}{3 + 2(5)}\right)^2} \cdot \frac{13}{(3 + 2(5))^2} \] Calculating: \[ \frac{3(5) - 2}{3 + 2(5)} = \frac{15 - 2}{3 + 10} = \frac{13}{13} = 1 \] Thus: \[ f'(5) = \frac{1}{1 + 1^2} \cdot \frac{13}{(3 + 10)^2} = \frac{1}{2} \cdot \frac{13}{169} = \frac{13}{338} \] ### Step 8: Find \( g'\left(\frac{\pi}{4}\right) \) Finally, substituting into the expression for \( g' \): \[ g'\left(\frac{\pi}{4}\right) = \frac{1}{f'(5)} = \frac{1}{\frac{13}{338}} = \frac{338}{13} \] ### Final Answer Thus, the value of \( g'\left(\frac{\pi}{4}\right) \) is: \[ \boxed{\frac{338}{13}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

Let f(x)=x+ sin x . Suppose g denotes the inverse function of f. The value of g'(pi/4+1/sqrt2) has the value equal to

Let f(x)=x+ sin x . Suppose g denotes the inverse function of f. The value of g'(pi/4+1/sqrt2) has the value equal to

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

if f(x)=x^x,x in (1,infty) and g(x) be inverse function of f(x) then g^(')(x) must be equal to

The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (pi)/(2)) is