Home
Class 12
MATHS
If a,b, c, lambda in N, then the least p...

If `a,b, c, lambda in N`, then the least possible value of `|(a^(2)+lambda, ab,ac),(ba,b^(2)+lambda,bc),(ca, cb, c^(2)+lambda)|` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the least possible value of the determinant \[ D = \begin{vmatrix} a^2 + \lambda & ab & ac \\ ba & b^2 + \lambda & bc \\ ca & cb & c^2 + \lambda \end{vmatrix} \] where \( a, b, c, \lambda \in \mathbb{N} \), we can follow these steps: ### Step 1: Rewrite the Determinant We start with the determinant: \[ D = \begin{vmatrix} a^2 + \lambda & ab & ac \\ ab & b^2 + \lambda & bc \\ ac & bc & c^2 + \lambda \end{vmatrix} \] ### Step 2: Apply Row Operations We can perform row operations to simplify the determinant. Let's add the first row to the second and third rows: \[ R_2 \rightarrow R_2 + R_1 \quad \text{and} \quad R_3 \rightarrow R_3 + R_1 \] This gives us: \[ D = \begin{vmatrix} a^2 + \lambda & ab & ac \\ 2a^2 + \lambda & b^2 + \lambda + ab & bc + ac \\ 2a^2 + \lambda & bc + ac & c^2 + \lambda + ac \end{vmatrix} \] ### Step 3: Factor Out Common Terms Now, we can factor out \( a^2 + b^2 + c^2 + \lambda \) from the first row: \[ D = (a^2 + b^2 + c^2 + \lambda) \begin{vmatrix} 1 & \frac{ab}{a^2 + \lambda} & \frac{ac}{a^2 + \lambda} \\ 1 & \frac{b^2 + \lambda + ab}{a^2 + \lambda} & \frac{bc + ac}{a^2 + \lambda} \\ 1 & \frac{bc + ac}{a^2 + \lambda} & \frac{c^2 + \lambda + ac}{a^2 + \lambda} \end{vmatrix} \] ### Step 4: Further Simplification Next, we can simplify the remaining determinant by performing column operations. Subtract the first column from the second and third columns: \[ C_2 \rightarrow C_2 - C_1 \quad \text{and} \quad C_3 \rightarrow C_3 - C_1 \] This results in: \[ D = (a^2 + b^2 + c^2 + \lambda) \begin{vmatrix} 1 & \frac{ab - a^2 - \lambda}{a^2 + \lambda} & \frac{ac - a^2 - \lambda}{a^2 + \lambda} \\ 1 & \frac{b^2 + \lambda + ab - a^2 - \lambda}{a^2 + \lambda} & \frac{bc + ac - a^2 - \lambda}{a^2 + \lambda} \\ 1 & \frac{bc + ac - a^2 - \lambda}{a^2 + \lambda} & \frac{c^2 + \lambda + ac - a^2 - \lambda}{a^2 + \lambda} \end{vmatrix} \] ### Step 5: Calculate the Determinant Now we can compute the determinant. The minimum value occurs when \( a = b = c = \lambda = 1 \): \[ D_{\text{min}} = (1^2 + 1^2 + 1^2 + 1) \cdot \text{determinant of the simplified matrix} \] Calculating this gives: \[ D_{\text{min}} = 4 \cdot 1 = 4 \] ### Conclusion Thus, the least possible value of the determinant is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin2A=lambdasin2B , then write the value of (lambda+1)/(lambda-1) .

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Let veca = 2hati+lambda_1 hatj+3hatk , vec(b)=4hati+(3-lambda_2) hatj+6hatk and vec(c)=3hati+6hatj+(lambda_3-1)hatk be three vectors such that vec(b)=2 vec(a) and vec(a) is perpendicular to vec(c) then a possible value of ((lambda)_1,(lambda)_2,(lambda)_3) is: (a) (1,3,1) (b) ((-1/2),4,0) (c) (1,5,1) (d) ((1/2), 4, -2)

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a ) lambda=4 (b) lambda=2 (c) lambda=-1 (d) lambda has no real value

If x^n-1 is divisible by x-lambda, then the least prositive integral value of lambda is 1 b. 3 c. 4 d. 2

Show that if lambda_(1), lambda_(2), ...., lamnda_(n) are n eigenvalues of a square matrix a of order n, then the eigenvalues of the matric A^(2) are lambda_(1)^(2), lambda_(2)^(2),..., lambda_(n)^(2) .

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=a^(2)+b^(2)+c^(2)+1

Let a,b,c be the sides of a triangle. No two of them are equal and lambda in R If the roots of the equation x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0 are real, then (a) lambda 5/3 (c) lambda in (1/5,5/3) (d) lambda in (4/3,5/3)

The values of lambda for which the function f(x)=lambdax^3-2lambdax^2+(lambda+1)x+3lambda is increasing through out number line (a) lambda in (-3,3) (b) lambda in (-3,0) (c) lambda in (0,3) (d) lambda in (1,3)