Home
Class 12
PHYSICS
Calculate x in the equation : (velocity)...

Calculate x in the equation : `(velocity)^x = (pressure )^(3//2)xx(density)^(-3//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\text{velocity})^x = (\text{pressure})^{\frac{3}{2}} \times (\text{density})^{-\frac{3}{2}}\), we will use dimensional analysis. ### Step 1: Write the dimensions of each physical quantity 1. **Velocity**: - The dimension of velocity is given by: \[ [\text{velocity}] = [L^1 T^{-1}] = M^0 L^1 T^{-1} \] 2. **Pressure**: - Pressure is defined as force per unit area. The dimension of force is \(M L T^{-2}\), and area is \(L^2\). Therefore: \[ [\text{pressure}] = \frac{[M L T^{-2}]}{[L^2]} = M^1 L^{-1} T^{-2} \] 3. **Density**: - Density is mass per unit volume. The dimension of volume is \(L^3\). Thus: \[ [\text{density}] = \frac{[M]}{[L^3]} = M^1 L^{-3} T^0 \] ### Step 2: Substitute the dimensions into the equation Now, we can rewrite the equation using the dimensions we found: \[ [\text{velocity}]^x = [\text{pressure}]^{\frac{3}{2}} \times [\text{density}]^{-\frac{3}{2}} \] Substituting the dimensions: \[ (M^0 L^1 T^{-1})^x = (M^1 L^{-1} T^{-2})^{\frac{3}{2}} \times (M^1 L^{-3} T^0)^{-\frac{3}{2}} \] ### Step 3: Simplify the right side Calculating the right side: 1. For pressure: \[ (M^1 L^{-1} T^{-2})^{\frac{3}{2}} = M^{\frac{3}{2}} L^{-\frac{3}{2}} T^{-3} \] 2. For density: \[ (M^1 L^{-3} T^0)^{-\frac{3}{2}} = M^{-\frac{3}{2}} L^{\frac{9}{2}} T^0 \] Now combine these results: \[ M^{\frac{3}{2}} L^{-\frac{3}{2}} T^{-3} \times M^{-\frac{3}{2}} L^{\frac{9}{2}} T^0 = M^{\frac{3}{2} - \frac{3}{2}} L^{-\frac{3}{2} + \frac{9}{2}} T^{-3} = M^0 L^{3} T^{-3} \] ### Step 4: Set the dimensions equal Now we have: \[ M^0 L^x T^{-x} = M^0 L^3 T^{-3} \] ### Step 5: Compare the powers of dimensions From the equation, we can compare the powers of \(L\) and \(T\): 1. For \(L\): \[ x = 3 \] 2. For \(T\): \[ -x = -3 \implies x = 3 \] ### Conclusion Thus, the value of \(x\) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

A steel ball of radius 2 xx 10^(-3) m is released in an oil of viscosity 0.232 Ns m^(-2) and density 840 kg m^(-3) . Calculate the terminal velocity of ball. Take density of steel as 7800 kg m^(-3)

The roots of the equation x^(2)-2sqrt(3)x+3=0 are

Calculate the density of NH_(3) at 30^(@)C and 5 atm pressure.

Calculate the density of NH_(3) at 30^(@)C and 5 atm pressure.

The roots of the equation x^(3) -2x^(2) -x +2 =0 are

Solve the equation: 2^(2x+3)+2^(x+3)=1+2^(x) .

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)

Solve the equation and verify your answer: (x+3)/(x-3)+(x+2)/(x-2)=2

A root of the equation (x-2)(x-3)=(155 xx 78)/((77)^(2))

The density of CO_(2) gas at 0^(@)C and at a pressure of 1.0 xx 10^(5) Nm^(-2) is 1.98 kgm^(-3) . Calculate the root mean square velocity of its molecules at 0^(@)C and 30^(@)C . Assume the pressure to remain constant.