Home
Class 12
MATHS
Consider I(alpha)=int(alpha)^(alpha^(2))...

Consider `I(alpha)=int_(alpha)^(alpha^(2))(dx)/(x)` (where `alpha gt 0`), then the value of `Sigma_(r=2)^(5)I(r )+Sigma_(k=2)^(5)I((1)/(k))` is

A

0

B

1

C

ln 2

D

ln 4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \Sigma_{r=2}^{5} I(r) + \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) \] where \[ I(\alpha) = \int_{\alpha}^{\alpha^2} \frac{dx}{x} \] ### Step 1: Evaluate \( I(\alpha) \) We start with the integral: \[ I(\alpha) = \int_{\alpha}^{\alpha^2} \frac{dx}{x} \] The integral of \( \frac{1}{x} \) is \( \log x \). Therefore, we can evaluate the integral: \[ I(\alpha) = \left[ \log x \right]_{\alpha}^{\alpha^2} = \log(\alpha^2) - \log(\alpha) \] Using the properties of logarithms: \[ I(\alpha) = 2 \log \alpha - \log \alpha = \log \alpha \] ### Step 2: Evaluate \( \Sigma_{r=2}^{5} I(r) \) Now we calculate \( \Sigma_{r=2}^{5} I(r) \): \[ \Sigma_{r=2}^{5} I(r) = I(2) + I(3) + I(4) + I(5) \] Substituting the values of \( I(r) \): \[ = \log 2 + \log 3 + \log 4 + \log 5 \] ### Step 3: Evaluate \( \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) \) Next, we evaluate \( \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) \): \[ I\left(\frac{1}{k}\right) = \log\left(\frac{1}{k}\right) = -\log k \] Thus, \[ \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) = -\log 2 - \log 3 - \log 4 - \log 5 \] ### Step 4: Combine the results Now we combine both sums: \[ \Sigma_{r=2}^{5} I(r) + \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) = (\log 2 + \log 3 + \log 4 + \log 5) + (-\log 2 - \log 3 - \log 4 - \log 5) \] This simplifies to: \[ 0 \] ### Final Answer Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))) .

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

int[sinalphasin(x-alpha)+sin^2(x/2-alpha)]dx

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

A value of alpha such that int_(alpha)^(alpha+1) (dx)/((x+a)(x+alpha+1))="loge"((9)/(8)) is

If int_(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,alpha ne 0 , then the value of k can belong to the interval

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).