Home
Class 12
MATHS
If cos^(-1)(n)/(2pi)gt(2pi)/(3) then max...

If `cos^(-1)(n)/(2pi)gt(2pi)/(3)` then maximum and minimum values of integer in are respectively

A

3

B

4

C

`-4`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given inequality: \[ \frac{\cos^{-1}(n)}{2\pi} > \frac{2\pi}{3} \] ### Step 1: Multiply both sides by \(2\pi\) Since \(2\pi\) is a positive number, we can multiply both sides of the inequality without changing the direction of the inequality: \[ \cos^{-1}(n) > \frac{2\pi}{3} \cdot 2\pi \] ### Step 2: Simplify the right side Calculating the right side: \[ \frac{2\pi}{3} \cdot 2\pi = \frac{4\pi^2}{3} \] So we have: \[ \cos^{-1}(n) > \frac{4\pi^2}{3} \] ### Step 3: Apply the cosine function To isolate \(n\), we apply the cosine function to both sides. Since the cosine function is decreasing in the range of \([0, \pi]\), we need to reverse the inequality: \[ n < \cos\left(\frac{4\pi^2}{3}\right) \] ### Step 4: Evaluate \(\cos\left(\frac{4\pi^2}{3}\right)\) To find \(\cos\left(\frac{4\pi^2}{3}\right)\), we need to recognize that \(\frac{4\pi^2}{3}\) is outside the standard range for cosine. We can reduce this angle: \[ \frac{4\pi^2}{3} = 2\pi + \frac{\pi}{3} \] Thus, we have: \[ \cos\left(\frac{4\pi^2}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] ### Step 5: Establish the bounds for \(n\) Now we have: \[ n < \frac{1}{2} \] ### Step 6: Determine the integer values Since \(n\) is an integer, the maximum integer value for \(n\) that satisfies this inequality is: \[ n_{\text{max}} = 0 \] The minimum integer value for \(n\) can be any integer less than \(\frac{1}{2}\), which can go down to negative infinity. However, we are interested in the largest integer less than or equal to \(0\): \[ n_{\text{min}} = -1 \] ### Conclusion Thus, the maximum and minimum integer values of \(n\) are: \[ \text{Maximum value of } n = 0 \] \[ \text{Minimum value of } n = -1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)((n)/(2pi)) gt(2pi)/(3) then maximum and minimum values of integer n are respectively

If cos^(-1)((n)/(2pi))lt(2pi)/(3) then maximum and minimum values of integer in are respectively

The maximum and minimum values of the integral. int_0^(pi//2)dx/(1+sin^2x) are:

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Find maximum and minimum values of f(x)=sinx+1/2cos2x , where 0

Find the maximum and minimum value of f(x)=sinx+1/2cos2xin[0,pi/2]dot

The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3))+3le10 are respectively

The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3))+3le10 are respectively

Find maximum and minimum values of 2sin(theta+(pi)/(6))+sqrt(3)cos(theta-(pi)/(6))

Find the maximum and the minimum values of f(x)=sin3x+4,\ \ x in (-pi//2,\ pi//2) , if any.