Home
Class 12
MATHS
Let f(n, x)=intn cos (nx)dx, with f(n, 0...

Let `f(n, x)=intn cos (nx)dx`, with `f(n, 0)=0.` If the expression `Sigma_(x=1)^(89)f(1, x)` simplifies to `(sina sinb)/(sinc)`, then the value of `(b)/(ac)` is (where `a gt b`)

A

45

B

89

C

`(89)/(45)`

D

`(45)/(89)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the function defined as: \[ f(n, x) = \int n \cos(nx) \, dx \] ### Step 1: Integrate the function We integrate \( n \cos(nx) \): \[ f(n, x) = \int n \cos(nx) \, dx = \frac{n}{n} \sin(nx) + C = \sin(nx) + C \] ### Step 2: Apply the condition \( f(n, 0) = 0 \) We know that \( f(n, 0) = 0 \): \[ f(n, 0) = \sin(n \cdot 0) + C = 0 \implies C = 0 \] Thus, we have: \[ f(n, x) = \sin(nx) \] ### Step 3: Evaluate the summation We need to evaluate the summation: \[ \sum_{x=1}^{89} f(1, x) = \sum_{x=1}^{89} \sin(x) \] ### Step 4: Use the formula for the sum of sines The formula for the sum of sines from \( \sin(1) \) to \( \sin(n) \) is given by: \[ \sum_{k=1}^{n} \sin(k) = \frac{\sin\left(\frac{n}{2}\right) \sin\left(\frac{n+1}{2}\right)}{\sin\left(\frac{1}{2}\right)} \] For \( n = 89 \): \[ \sum_{x=1}^{89} \sin(x) = \frac{\sin\left(\frac{89}{2}\right) \sin\left(\frac{90}{2}\right)}{\sin\left(\frac{1}{2}\right)} \] ### Step 5: Simplify the expression Calculating the values: - \( \frac{89}{2} = 44.5 \) - \( \frac{90}{2} = 45 \) Thus, we have: \[ \sum_{x=1}^{89} \sin(x) = \frac{\sin(44.5) \cdot \sin(45)}{\sin(0.5)} \] ### Step 6: Identify the parameters \( a, b, c \) We compare this with the given expression \( \frac{\sin(a) \sin(b)}{\sin(c)} \): - \( a = 45 \) - \( b = 44.5 \) - \( c = 0.5 \) ### Step 7: Calculate \( \frac{b}{ac} \) Now, we need to find: \[ \frac{b}{ac} = \frac{44.5}{45 \cdot 0.5} \] Calculating the denominator: \[ 45 \cdot 0.5 = 22.5 \] Thus, we have: \[ \frac{b}{ac} = \frac{44.5}{22.5} \] ### Step 8: Simplify the fraction To simplify \( \frac{44.5}{22.5} \): \[ \frac{44.5 \times 10}{22.5 \times 10} = \frac{445}{225} \] ### Step 9: Final simplification Now we can simplify \( \frac{445}{225} \): \[ \frac{445 \div 5}{225 \div 5} = \frac{89}{45} \] Thus, the final answer is: \[ \frac{b}{ac} = \frac{89}{45} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

If f(x)= \sum_{n=1}^{\infty }(sin nx)/(4^(n)) and int_(0)^(pi)f(x) dx="log" ((m)/(n)) , then the value of (m+n) is ….

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

If f(x)=(lim)_(nvecoo)(cos(x/(sqrt(n))))^n , then the value of (lim)(xvec0)(f(x)-1)/x is 0 b. 1 c. 2 d. 3//2

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

f:N to N, where f(x)=x-(-1)^(x) , Then f is

If f(x) is a polynomial of degree n such that f(0)=0 , f(x)=1/2,....,f(n)=n/(n+1) , ,then the value of f (n+ 1) is

If f(n)=(int_0^n[x]dx)/(int_0^n{x}dx) (where,[*] and {*} denotes greatest integer and fractional part of x and n in N). Then, the value of f(4) is...

Let f(x)=x^(2)+ax+b be a quadratic polynomial in which a and b are integers. If for a given integer n, f(n) f(n+1)=f(m) for some integer m, then the value of m is

Let f(x) =x^(n+1)+ax^n, "where " a gt 0 . Then, x=0 is point of