Home
Class 12
MATHS
The value of lim(xrarr0)(1-cos^(3)x)/(xs...

The value of `lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)`

A

`(3)/(2)`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{1 - \cos^3 x}{x \sin x \cos x} \), we will follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ \lim_{x \to 0} \frac{1 - \cos^3 x}{x \sin x \cos x} \] We can use the identity \( \sin x \) in the denominator. We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{1 - \cos^3 x}{x^2 \cos x} \cdot \frac{\sin x}{x} \] ### Step 2: Simplify the Expression Now we have: \[ \lim_{x \to 0} \frac{1 - \cos^3 x}{x^2 \cos x} \] This limit evaluates to \( \frac{0}{0} \) as \( x \to 0 \) because \( 1 - \cos^3(0) = 0 \) and \( x^2 \cos(0) = 0 \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator: - The derivative of the numerator \( 1 - \cos^3 x \) is: \[ \frac{d}{dx}(1 - \cos^3 x) = 3 \cos^2 x \sin x \] - The derivative of the denominator \( x^2 \cos x \) is: \[ \frac{d}{dx}(x^2 \cos x) = 2x \cos x - x^2 \sin x \] ### Step 4: Substitute Back into the Limit Now we substitute these derivatives back into the limit: \[ \lim_{x \to 0} \frac{3 \cos^2 x \sin x}{2x \cos x - x^2 \sin x} \] ### Step 5: Evaluate the Limit Now we evaluate the limit as \( x \to 0 \): - The numerator becomes \( 3 \cdot 1^2 \cdot 0 = 0 \). - The denominator becomes \( 2 \cdot 0 \cdot 1 - 0^2 \cdot 0 = 0 \). Since we still have \( \frac{0}{0} \), we apply L'Hôpital's Rule again. ### Step 6: Differentiate Again Differentiate the numerator and denominator again: - The derivative of \( 3 \cos^2 x \sin x \) is: \[ 3(2 \cos x (-\sin x) \sin x + \cos^2 x \cos x) = 3(-2 \cos x \sin^2 x + \cos^3 x) \] - The derivative of \( 2x \cos x - x^2 \sin x \) is: \[ 2 \cos x - 2x \sin x - (x^2 \cos x + 2x \sin x) \] ### Step 7: Substitute and Simplify Now we substitute back into the limit and evaluate again. After simplification and substituting \( x = 0 \), we find: \[ \lim_{x \to 0} \frac{3 \cdot 1^2 \cdot 0}{2 \cdot 0 \cdot 1 - 0^2 \cdot 0} = \frac{3}{2} \] ### Final Answer Thus, the value of the limit is: \[ \frac{3}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(xrarr0)(cosx)^(cotx) , is

The value of lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

lim_( xrarr0) (1-cosx)/(x^(2))

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is