Home
Class 12
MATHS
The number of real solution(s) of the eq...

The number of real solution(s) of the equation `sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi` is/are

A

one

B

two

C

zero

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2 is:

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is