Home
Class 12
MATHS
Let A=|a(ij)|" be a "3xx3 matrix where a...

Let `A=|a_(ij)|" be a "3xx3` matrix where `a_(ij)={{:((i^(j)-j^(i)+2ij)x,iltj),(1,igtj","),(0,i=j):}`, then the minimum value of `|A|` is equal to (where x is a real number)

A

`(1)/(4)`

B

`-(8)/(33)`

C

7

D

`-(4)/(33)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the given 3x3 matrix \( A = |a_{ij}| \) where the elements \( a_{ij} \) are defined based on the conditions provided. Let's break down the solution step by step. ### Step 1: Define the matrix elements The matrix \( A \) is defined as follows: - \( a_{ij} = 0 \) if \( i = j \) - \( a_{ij} = i^j - j^i + 2ijx \) if \( i < j \) - \( a_{ij} = 1 \) if \( i > j \) ### Step 2: Fill in the matrix We will fill in the elements of the matrix \( A \): \[ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \] - For \( a_{11} \): \( i = j \) so \( a_{11} = 0 \) - For \( a_{22} \): \( i = j \) so \( a_{22} = 0 \) - For \( a_{33} \): \( i = j \) so \( a_{33} = 0 \) Now, we compute the other elements: - For \( a_{12} \): \( i = 1, j = 2 \) so \( a_{12} = 1^2 - 2^1 + 2 \cdot 1 \cdot 2 \cdot x = 1 - 2 + 4x = 4x - 1 \) - For \( a_{13} \): \( i = 1, j = 3 \) so \( a_{13} = 1^3 - 3^1 + 2 \cdot 1 \cdot 3 \cdot x = 1 - 3 + 6x = 6x - 2 \) - For \( a_{21} \): \( i = 2, j = 1 \) so \( a_{21} = 1 \) - For \( a_{23} \): \( i = 2, j = 3 \) so \( a_{23} = 2^3 - 3^2 + 2 \cdot 2 \cdot 3 \cdot x = 8 - 9 + 12x = 12x - 1 \) - For \( a_{31} \): \( i = 3, j = 1 \) so \( a_{31} = 1 \) - For \( a_{32} \): \( i = 3, j = 2 \) so \( a_{32} = 1 \) Putting these together, we have: \[ A = \begin{bmatrix} 0 & 4x - 1 & 6x - 2 \\ 1 & 0 & 12x - 1 \\ 1 & 1 & 0 \end{bmatrix} \] ### Step 3: Calculate the determinant To find the determinant \( |A| \), we can use the formula for the determinant of a 3x3 matrix: \[ |A| = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] Substituting the values: \[ |A| = 0 \cdot (0 \cdot 0 - (12x - 1) \cdot 1) - (4x - 1)(1 \cdot 0 - (12x - 1) \cdot 1) + (6x - 2)(1 \cdot 1 - 0 \cdot 1) \] \[ = 0 - (4x - 1)(- (12x - 1)) + (6x - 2)(1) \] \[ = (4x - 1)(12x - 1) + (6x - 2) \] \[ = 48x^2 - 4x - 12x + 1 + 6x - 2 \] \[ = 48x^2 + (-4x - 12x + 6x) + (1 - 2) \] \[ = 48x^2 - 10x - 1 \] ### Step 4: Find the minimum value To find the minimum value of the quadratic \( 48x^2 - 10x - 1 \), we can use the vertex formula \( x = -\frac{b}{2a} \): \[ x = -\frac{-10}{2 \cdot 48} = \frac{10}{96} = \frac{5}{48} \] Substituting \( x = \frac{5}{48} \) back into the determinant: \[ |A| = 48\left(\frac{5}{48}\right)^2 - 10\left(\frac{5}{48}\right) - 1 \] \[ = 48 \cdot \frac{25}{2304} - \frac{50}{48} - 1 \] \[ = \frac{1200}{2304} - \frac{50}{48} - 1 \] \[ = \frac{1200}{2304} - \frac{2400}{2304} - \frac{2304}{2304} \] \[ = \frac{1200 - 2400 - 2304}{2304} = \frac{-3504}{2304} \] Thus, the minimum value of \( |A| \) is \( -\frac{3504}{2304} \). ### Final Answer The minimum value of \( |A| \) is \( -\frac{3504}{2304} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

Construct a 3xx3 matrix whose elements are given by a_(ij)={{:((1)/(2)|2i-3j|","i!=j),(|2i-j|","i=j):}

If A=[a_(i j)] is a 2xx2 matrix such that a_(i j)=i+2j , write A .

Construct a 2xx2 matrix, where (i) a_("ij")=((i-2j)^(2))/(2) (ii) a_("ij")=|-2i+3j|

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct a_(2xx2) matrix, where (i) a_(ij)=((i-2j)^(2))/(2) (ii) a_(ij)=|-2hati+3j|

Let A=[a_(ij)] be a square matrix of order n such that {:a_(ij)={(0," if i ne j),(i,if i=j):} Statement -2 : The inverse of A is the matrix B=[b_(ij)] such that {:b_(ij)={(0," if i ne j),(1/i,if i=j):} Statement -2 : The inverse of a diagonal matrix is a scalar matrix.

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,