Home
Class 12
MATHS
If S=1(25)+2(24)+3(23)+…………..+24(2)+25(1...

If `S=1(25)+2(24)+3(23)+…………..+24(2)+25(1)` then the value of `(S)/(900)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S = 1(25) + 2(24) + 3(23) + \ldots + 24(2) + 25(1) \) and then find the value of \( \frac{S}{900} \). ### Step-by-Step Solution: 1. **Identify the Pattern**: The series can be represented as: \[ S = \sum_{n=1}^{25} n(26 - n) \] Here, the first term \( n \) is increasing from 1 to 25, and the second term \( 26 - n \) is decreasing from 25 to 1. 2. **Expand the Summation**: We can expand the summation: \[ S = \sum_{n=1}^{25} (26n - n^2) \] This can be separated into two sums: \[ S = 26 \sum_{n=1}^{25} n - \sum_{n=1}^{25} n^2 \] 3. **Calculate the First Sum**: The sum of the first \( n \) natural numbers is given by the formula: \[ \sum_{n=1}^{N} n = \frac{N(N + 1)}{2} \] For \( N = 25 \): \[ \sum_{n=1}^{25} n = \frac{25 \cdot 26}{2} = 325 \] 4. **Calculate the Second Sum**: The sum of the squares of the first \( n \) natural numbers is given by the formula: \[ \sum_{n=1}^{N} n^2 = \frac{N(N + 1)(2N + 1)}{6} \] For \( N = 25 \): \[ \sum_{n=1}^{25} n^2 = \frac{25 \cdot 26 \cdot 51}{6} = 5525 \] 5. **Substitute Back into the Expression for \( S \)**: Now substituting these values back into the expression for \( S \): \[ S = 26 \cdot 325 - 5525 \] Calculate \( 26 \cdot 325 \): \[ 26 \cdot 325 = 8450 \] Thus, \[ S = 8450 - 5525 = 2925 \] 6. **Calculate \( \frac{S}{900} \)**: Finally, we need to find: \[ \frac{S}{900} = \frac{2925}{900} \] Simplifying this gives: \[ \frac{2925}{900} = 3.25 \] ### Final Answer: The value of \( \frac{S}{900} \) is \( 3.25 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin((23pi)/(24))=sqrt((2sqrtp-sqrtq-1)/(4sqrtr)) , then the value of (p^(2)+q^(2)-r^(2)) is equal to

Let S_(k) = (1+2+3+...+k)/(k) . If S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A , then A is equal to

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

If a /_\ ABC, if r=r_2+r_3-r_1 and /_Agt pi/3 then the range of S/a is equal to (A) (1/2, 2) (B) (1/2,∞) (C) (1/2,3) (D) (3,∞)

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)\ t^2\ f(t)dt , then f((1)/(2)) is equal to (a) (24)/(25) (b) (4)/(25) (c) (4)/(5) (d) (2)/(5)

If tan(A-B)=1,sec(A+B)=2/(sqrt(3)) , then the smallest positive value of B is. (a) (25pi)/(24) (b) (19pi)/(24) (c) (13pi)/(24) (d) (11pi)/(24)

If 25C_0 25C_2 +2. 25C_1 25C_3 +3. 25C_2 .25C_4+....+ 24. 25C_23.25C_25=k. 49C_lambda+50C_mu , then the value of 2k-lambda-mu is greater than (where mu,lambda lt 25 )

If AxxB={(1,3),(1,4),(2,3),(2,4)} , then find sets A and B. .

If a=(25-x^2)/(16) and (log_a) ((24-2x-x^2))/(14)gt1 ,then x in

Match the following Column I Column II (log)_4(x+1)+(log)_4(x+8)=3/2, then value (s) of x is (are) p. 1 If I n x=0 then x is equal to q. 4 The value of 4 (3(log)_2(81)/(80)+5(log)_2(25)/(24)+7log_2(16)/(15)) is r. 0 The remainder when 2x^5-x^3+x^2=1 is divided by (2x+1) is kdot Then (16 k+11)/(16) is equal to s. 2