Home
Class 12
CHEMISTRY
Hydrogen peroxide (H(2)O(2)) decomposes ...

Hydrogen peroxide `(H_(2)O_(2))` decomposes according to the equation
`2H_(2)O_(2)hArr 2H_(2)O(l)+O_(2)(g)`
From the following data at `25^(@)C` calculate the value of `K_(p)` at 400 K for the above reaction,
`DeltaH^(@)=-196.0 kJ Deltas^(@)=125.65J//K`.
`["Given : "10^(-.15)=1.41]`

A

`1.41xx10^(32)`

B

`0.14xx10^(-32)`

C

`0.14xx10^(3)`

D

`1.3xx10^(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the value of \( K_p \) at 400 K for the decomposition of hydrogen peroxide, we will follow these steps: ### Step 1: Calculate \( \Delta G^\circ \) at 400 K We know the Gibbs free energy change (\( \Delta G^\circ \)) can be calculated using the equation: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] Given: - \( \Delta H^\circ = -196.0 \, \text{kJ} = -196.0 \times 10^3 \, \text{J} = -196000 \, \text{J} \) - \( \Delta S^\circ = 125.65 \, \text{J/K} \) - \( T = 400 \, \text{K} \) Substituting the values: \[ \Delta G^\circ = -196000 \, \text{J} - (400 \, \text{K} \times 125.65 \, \text{J/K}) \] Calculating \( 400 \times 125.65 \): \[ 400 \times 125.65 = 50260 \, \text{J} \] Now substituting back: \[ \Delta G^\circ = -196000 \, \text{J} - 50260 \, \text{J} = -246260 \, \text{J} \] ### Step 2: Relate \( \Delta G^\circ \) to \( K_p \) The relationship between \( \Delta G^\circ \) and \( K_p \) is given by: \[ \Delta G^\circ = -RT \ln K_p \] Where: - \( R = 8.314 \, \text{J/(mol K)} \) - \( T = 400 \, \text{K} \) Rearranging for \( K_p \): \[ K_p = e^{-\Delta G^\circ / (RT)} \] Substituting \( \Delta G^\circ = -246260 \, \text{J} \): \[ -246260 = - (8.314 \times 400) \ln K_p \] ### Step 3: Calculate \( \ln K_p \) Calculating \( RT \): \[ RT = 8.314 \times 400 = 3325.6 \, \text{J} \] Now substituting back: \[ 246260 = 3325.6 \ln K_p \] Solving for \( \ln K_p \): \[ \ln K_p = \frac{246260}{3325.6} \approx 74.05 \] ### Step 4: Convert \( \ln K_p \) to \( K_p \) Using the relationship \( K_p = e^{\ln K_p} \): \[ K_p = e^{74.05} \] To convert this to logarithmic form: \[ K_p = 10^{\log_{10}(K_p)} = 10^{\frac{74.05}{2.303}} \approx 10^{32.15} \] ### Step 5: Final Calculation of \( K_p \) Given \( 10^{-0.15} = 1.41 \): \[ K_p = 10^{32} \times 10^{-0.15} = 1.41 \times 10^{32} \] ### Final Answer Thus, the value of \( K_p \) at 400 K is: \[ K_p \approx 1.41 \times 10^{32} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the equilibrium H_(2) O (1) hArr H_(2) O (g) at 1 atm 298 K

For the reaction: 4NH_(3)(g)+7O_(2(g))hArr4NO_(2(g))+6H_(2)O_(g).K_(p) is related to K_(c) by

For the reaction CO(g)+(1)/(2) O_(2)(g) hArr CO_(2)(g),K_(p)//K_(c) is

In the reaction 2NO(g) hArr N_(2)(g)+O_(2)(g) , the values of K_(c) and K_(p) are ……….. at a given temperature.

K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

The value of K_(p) fot the reaction 2H_(2)O(g) + 2Cl_(2)(g)hArr4HCl(g) + O_(2)(g) is 0.03 and at 427^(@)C , when the partial pressure are expressed in atmosphere then the value of K_(c) for the same reaction is:

Diborane is a potentail rocket fuel which undergoes combusion according to the reaction B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(3)(s)+3H_(2)O(g) From the following data, calculate the enthalpy change for the combustion of diborane 2B(s)+(3//2)O_(2)(g)rarrB_(2)O_(3)(s) DeltaH= -1273 kJ mol^(-1) H_(2)(g)+(1//2)O_(2)(g)rarrH_(2)O(1) " "Delta H= -286 kJ mol^(-1) H_(2)O(1)rarrH_(2)O(g)" "DeltaH=44 kJ mol^(-1) 2B(s)+3H_(2)(g)rarrB_(2)H_(6)(g)" "Delta H= 36kJ mol^(-1)

For the equilibrium reaction: 2H_(2)(g) +O_(2)(g) hArr 2H_(2)O(l) at 298 K DeltaG^(Theta) = - 474.78 kJ mol^(-1) . Calculate log K for it. (R = 8.314 J K^(-1)mol^(-1)) .