Home
Class 12
MATHS
If A(0, 0), B(theta, cos theta) and C(si...

If `A(0, 0), B(theta, cos theta) and C(sin^(3) theta, 0)` are the vertices of a triangle Abc, then the value of `theta` for which the triangle has the maximum area is `("where "theta in (0, (pi)/(2)))`

A

`(pi)/(6)`

B

`(pi)/(4)`

C

`(pi)/(3)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \theta \) for which the triangle \( ABC \) has the maximum area, we can follow these steps: ### Step 1: Determine the vertices of the triangle The vertices of the triangle are given as: - \( A(0, 0) \) - \( B(\theta, \cos \theta) \) - \( C(\sin^3 \theta, 0) \) ### Step 2: Use the formula for the area of a triangle The area \( A \) of triangle \( ABC \) can be calculated using the determinant formula: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the coordinates of points \( A \), \( B \), and \( C \): \[ A = \frac{1}{2} \left| 0(\cos \theta - 0) + \theta(0 - 0) + \sin^3 \theta(0 - \cos \theta) \right| \] This simplifies to: \[ A = \frac{1}{2} \left| -\sin^3 \theta \cdot \cos \theta \right| = \frac{1}{2} \sin^3 \theta \cdot \cos \theta \] ### Step 3: Maximize the area function To find the maximum area, we need to differentiate \( A \) with respect to \( \theta \) and set the derivative to zero: \[ A = \frac{1}{2} \sin^3 \theta \cdot \cos \theta \] Let \( A = \frac{1}{2} f(\theta) \) where \( f(\theta) = \sin^3 \theta \cdot \cos \theta \). ### Step 4: Differentiate \( f(\theta) \) Using the product rule: \[ f'(\theta) = 3\sin^2 \theta \cos \theta \cdot \cos \theta + \sin^3 \theta \cdot (-\sin \theta) \] This simplifies to: \[ f'(\theta) = 3\sin^2 \theta \cos^2 \theta - \sin^4 \theta \] Setting \( f'(\theta) = 0 \): \[ 3\sin^2 \theta \cos^2 \theta - \sin^4 \theta = 0 \] Factoring out \( \sin^2 \theta \): \[ \sin^2 \theta (3\cos^2 \theta - \sin^2 \theta) = 0 \] ### Step 5: Solve for \( \theta \) From \( \sin^2 \theta = 0 \), we get \( \theta = 0 \). From \( 3\cos^2 \theta - \sin^2 \theta = 0 \): \[ 3\cos^2 \theta = \sin^2 \theta \implies \tan^2 \theta = 3 \implies \tan \theta = \sqrt{3} \] Thus, \( \theta = \frac{\pi}{3} \). ### Step 6: Determine the maximum area condition Since \( \theta \) must be in the interval \( (0, \frac{\pi}{2}) \), we check the values: - \( \theta = 0 \) gives area = 0. - \( \theta = \frac{\pi}{3} \) is valid and gives a maximum area. ### Conclusion The value of \( \theta \) for which the triangle has the maximum area is: \[ \theta = \frac{\pi}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

If 2sin^(2)theta=3costheta , where 0lethetale2pi , then find the value of theta .

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

Find the values of theta which satisfy r sin theta=3 and r=4 (1 + sin theta), 0 <= theta <= 2 pi

If 2 cos ^(2) theta + sin theta - 2=0 and 0^(@) le theta le 90 ^(@) find the value of theta.

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

If tan theta = a/b , where 0lttheta lt pi/4 and bgtagt0 , find the value of sin 2theta, cos 2theta and tan 2theta.

If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is

Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 theta * cos 7 theta in [0,(pi)/2]

The area of the triangle with vertices (a, 0), (a cos theta, b sin theta), (a cos theta, -b sin theta) is