Home
Class 12
MATHS
The value of int(0)^((pi)/(3))log(1+sqrt...

The value of `int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx` is equal to

A

`pilog2`

B

`(pi)/(2)log2`

C

`(pi)/(3)log2`

D

`(pi)/(4)log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{3}} \log(1 + \sqrt{3} \tan x) \, dx \), we will use a property of definite integrals that allows us to transform the integral. ### Step 1: Use the property of definite integrals We know that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we can set \( a = \frac{\pi}{3} \). Thus, we can write: \[ I = \int_{0}^{\frac{\pi}{3}} \log(1 + \sqrt{3} \tan(\frac{\pi}{3} - x)) \, dx \] ### Step 2: Simplify \( \tan(\frac{\pi}{3} - x) \) Using the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] where \( a = \frac{\pi}{3} \) and \( b = x \), we have: \[ \tan\left(\frac{\pi}{3} - x\right) = \frac{\tan\frac{\pi}{3} - \tan x}{1 + \tan\frac{\pi}{3} \tan x} = \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x} \] ### Step 3: Substitute back into the integral Now substituting this back into our integral: \[ I = \int_{0}^{\frac{\pi}{3}} \log\left(1 + \sqrt{3} \cdot \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x}\right) \, dx \] ### Step 4: Simplify the logarithm We simplify the expression inside the logarithm: \[ 1 + \sqrt{3} \cdot \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x} = \frac{(1 + \sqrt{3} \tan x) + \sqrt{3}(\sqrt{3} - \tan x)}{1 + \sqrt{3} \tan x} = \frac{1 + 3}{1 + \sqrt{3} \tan x} = \frac{4}{1 + \sqrt{3} \tan x} \] ### Step 5: Rewrite the integral Now we can express \( I \) as: \[ I = \int_{0}^{\frac{\pi}{3}} \log\left(\frac{4}{1 + \sqrt{3} \tan x}\right) \, dx \] This can be split using properties of logarithms: \[ I = \int_{0}^{\frac{\pi}{3}} \log(4) \, dx - \int_{0}^{\frac{\pi}{3}} \log(1 + \sqrt{3} \tan x) \, dx \] ### Step 6: Combine the integrals Let \( J = \int_{0}^{\frac{\pi}{3}} \log(1 + \sqrt{3} \tan x) \, dx \). Then we have: \[ I = \frac{\pi}{3} \log(4) - I \] Thus: \[ 2I = \frac{\pi}{3} \log(4) \] \[ I = \frac{\pi}{6} \log(4) \] ### Step 7: Simplify the result Since \( \log(4) = \log(2^2) = 2 \log(2) \): \[ I = \frac{\pi}{6} \cdot 2 \log(2) = \frac{\pi}{3} \log(2) \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{3} \log(2)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

The value of int_(0)^(pi)abscosx^3dx is

int_(0)^(pi//3) [sqrt(3)tanx]dx=

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

The value of int_(0)^(32pi//3) sqrt(1+cos2x)dx is

The value of int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to

int_(0)^(pi//2) log | tan x | dx is equal to

The value of int_(0)^(pi//2)ln|tanx+cotx| dx is equal to :

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))