Home
Class 12
MATHS
The area (in sq. units) enclosed between...

The area (in sq. units) enclosed between the curve `x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)), AA t in R` and the line `y=x+1` above the line is

A

`(pi)/(4)`

B

`(1)/(2)`

C

`(3pi)/(4)+(1)/(2)`

D

`(pi)/(4)-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

Area enclosed by the curve y=f(x) defined parametrically as x=(1-t^2)/(1+t^2), y=(2t)/(1+t^2) is equal

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

For the curve x=t^(2) +3t -8 ,y=2t^(2)-2t -5 at point (2,-1)